Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
From 1 - 10 / 1491
  • Potential cumulative impacts on benthic habitats is based on the same method than <a href="http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/9477be37-94a9-4201-824a-f079bc27d097" target="_blank">Baltic Sea Impact Index</a>, but is focused on physical pressures and benthic habitats. The dataset was created based on separate analysis for potential cumulative impacts on only the benthic habitats, as these are particularly affected by physical pressures. In this case the evaluation was based on pressure layers representing <a href="http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/ea0ef0fa-0517-40a9-866a-ce22b8948c88" target="_blank">physical loss</a> and <a href="http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/05e325f3-bc30-44a0-8f0b-995464011c82" target="_blank">physical disturbance</a>, combined with information on the distribution of eight broad benthic habitat types and five habitat-forming species (<a href="http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/363cb353-46da-43f4-9906-7324738fe2c3" target="_blank">Furcellaria lumbricalis</a>, <a href="http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/f9cc7b2c-4080-4b19-8c38-cac87955cb91" target="_blank">Mytilus edulis</a>, <a href="http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/264ed572-403c-43bd-9707-345de8b9503c" target="_blank"> Fucus sp.</a>, <a href="http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/822ddece-d96a-4036-9ad8-c4b599776eca" target="_blank">Charophytes</a> and <a href="http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/ca327bb1-d3cb-46c2-8316-f5f62f889090" target="_blank">Zostera marina</a>). The potential cumulative impacts has been estimated based on currently best available data, but spatial and temporal gaps may occur in underlying datasets. Please scroll down to "Lineage" and visit <a href="http://stateofthebalticsea.helcom.fi/cumulative-impacts/" target="_blank">State of the Baltic Sea website</a> for more info.

  • The EMODnet (European Marine Observation and Data network) Geology project collects and harmonizes marine geological data from the European sea areas to support decision making and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at various scales from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This dataset includes EMODnet seabed substrate maps at a scale of 1:25 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonised into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. Further information about the EMODnet Geology project is available on the portal (http://www.emodnet-geology.eu/).

  • The EMODnet (European Marine Observation and Data network) Geology project collects and harmonizes marine geological data from the European sea areas to support decision making and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at various scales from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This dataset includes EMODnet seabed substrate maps at a scale of 1:5 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonised into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. Further information about the EMODnet Geology project is available on the portal (http://www.emodnet-geology.eu/).

  • This dataset contains points of information describing the location and size of other discharges than illegal oil discharges observed during aerial surveillance flights by HELCOM Contracting Parties 2014-2017. Further information about illegal discharges of oil in the Baltic Sea area and HELCOM aerial surveillance activities can be found at http://www.helcom.fi/baltic-sea-trends/maritime/illegal-spills/ The dataset contains the following information: Country Year Spill_ID= Spill ID FlightType= The type of flight the detection was made during: National = "N", CEPCO = "C", Super CEPCO = "S" Date= The date of the detection (dd.mm.yyyy) Time_UTC= The time of the detection (hh:mm) Wind_speed= The wind speed at the time of the detection (m/s) Wind_direc= The wind direction at the time of the detection (degrees) Latitude= The latitude of the detection (decimal degrees) Longitude= The longitude of the detection (decimal degrees) Length__km= The length of the detection (km) Width__km= The width of the detection (km) Area__km2_= The area of the detection (km2) Spill_cat= The category of the detection: other substance = "OS", unknown substance = "UNKNOWN" EstimVol_m= Estimated volume of the detection (m3) Polluter= Polluter (rig, ship, other, unknown) Category= Category of the detection: 100m3 = "5" Casefile= The name of the casefile the detection refers to Remarks= Any additional information

  • Harvester Seasons is a service designed to help with estimating evolving trafficability conditions in forested terrain based on weather and model forecast information. The full service is currently provided for the geographical area of Finland.

  • National Land Survey's Topographic map series in vector format is a dataset depicting the terrain of all of Finland. The most important elements are the road network, administrative borders, preservation areas, population centres, geographic names, waterways, land use and elevation. The largest scale level (1:100,000) of the Topographic map series in vector format is produced by generalising from the Topographic database. Topographic map series 1:250,000 is produced by generalising the dataset 1:100,000. Topographic map series 1:1,000,000 is produced by generalising the dataset 1:250,000. Topographic map series 1:4,500,000 is produced by generalising the dataset 1:1,000,000. The geographic names have been generalised from the geographic names in the Geographic Names Register to map names suited to the scale in question. The administrative borders in the Municipal Division of each scale are used as administrative borders. The product belongs to the open data of the National Land Survey of Finland. More information: Topographic data and how to acquire it http://www.maanmittauslaitos.fi/en/maps-and-spatial-data/expert-users/topographic-data-and-how-acquire-it.

  • Categories  

    The Geological Survey of Finland (GTK) has carried out systematic aerogeophysical low-altitude surveys during the period 1972-2007. The flight altitude (main terrain clearance) has been 30-40 m with a nominal flight line spacing of 200 m. The standard flight lines chosen run North-South and East-West and follow the main geological trends. The distance between the measuring points along the survey lines has been 6-50 m. The geophysical parameters measured include Earth's magnetic field, the electromagnetic field and natural gamma radiation. Magnetic measurements determine the Earth's magnetic field strength (magnetic flux density), and the parameter obtained is the total magnetic intensity. The measurements have been made with one to three proton magnetometers until 1991 and thereafter with one or two cesium magnetometers. Most of the land area has been flown using two magnetometers.

  • Paikkatietohakemisto is a national metadata discovery service.

  • The EMODnet (European Marine Observation and Data network) Geology project collects and harmonizes marine geological data from the European sea areas to support decision making and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at various scales from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This dataset includes EMODnet seabed substrate maps at a scale of 1:15 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonised into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. Further information about the EMODnet Geology project is available on the portal (http://www.emodnet-geology.eu/).

  • A maritime spatial plan is a strategic development document illustrated by a map. Map markings are used to show the values of marine areas and existing activities and potential future sites for new activities and their alternative placement in all of Finland’s marine areas. The plan covers the territorial waters and the Exclusive Economic Zone. The plan is not legally binding, but an assessment of its indirect and direct impacts and effectiveness forms part of the planning process. The administrative authorities of coastal regional councils approved the plan, prepared according to the Land Use and Building Act, between November and December 2020. The councils of coastal regions have prepared the maritime spatial plan in three different parts: Gulf of Finland (Helsinki-Uusimaa Regional Council and Regional Council of Kymenlaakso), Archipelago Sea and Southern Bothnian Sea (Regional Council of Southwest Finland and Regional Council of Satakunta), and Northern Bothnian Sea, Quark and Bothnian Bay (Regional Council of Ostrobothnia, Regional Council of Central Ostrobothnia, Council of Oulu Region and Regional Council of Lapland). The data is suitable for a general-level examination of Finnish marine areas. More information on maritime spatial plan: https://www.merialuesuunnitelma.fi.