Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
-
The data set consists of yearly maps of the start of the vegetation active period in deciduous vegetation and coniferous forest. The start of vegetation active period in deciduous vegetation (Day of Year) is defined as the day when deciduous trees unfold new leaves in spring. It is also often referred to as the green-up or greening day. The data set was derived from time series of the Normalized Difference Water Index (NDWI) calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. The start of vegetation active period in coniferous forest (Day of Year) is defined as the day when coniferous trees start to photosynthesize in spring. The data set was derived from MODIS satellite observation of Fractional Snow Cover. The day when snow cover decreases during spring melt was used as a proxy indicator for the beginning of the start of the vegetation active period. The data set can be used of phenology analysis at regional and national scale and as input data for modelling. This SYKE’s dataset can be used according to open data license (CC BY 4.0)
-
Maanmittauslaitoksen KM2-korkeusmallin kanssa yhteensopiva korkeusmalli, jossa alkuperäisiä korkeusarvoja on alennettu erityisesti virtavesikohteiden (viivamaiset sekä aluemaiset) ja tieverkoston risteyskohdissa. Alennetut korkeusarvot pyrkivät kuvaamaan virtausreittejä, kuten tierumpuja ja putkia, joita alkuperäisessä KM2:ssa ei ole. Aineisto on tuotettu yhdistämällä useita eri valtakunnan kattavia lähtöaineistoja, joita ovat - korkeusmalli KM2 (Maanmittauslaitos) - Siltojen kansien korkeudet (Syke) - Maastotietokanta (Maanmittauslaitos) - DIGIROAD-tieverkosto (Väylävirasto) - Rumpurekisteri (Väylävirasto) Lisäksi jotkin kunnat ja kaupungit ovat digitoineet Maastotietokannasta puuttuvia virtausreittejä. Korkeusarvot ovat ilmoitettu N2000-korkeusjärjestelmässä. Aineisto on avoin (lisenssi CC BY 4.0). Käyttötarkoitus: Korvaamalla KM2:n korkeusarvot uomakorjausaineiston arvoilla saadaan korkeusmalli, joka soveltuu mm. pintaveden virtauksen mallinnukseen alkuperäistä korkeusmallia paremmin. Tämä mahdollistaa esim. hulevesitulvariskien luotettavamman arvioinnin. Aineisto kuuluu SYKEn avoimiin aineistoihin (CC BY 4.0). Lähde: Syke, Maanmittauslaitos (perustuu Syken, MML:n ja Väyläviraston aineistoihin).
-
Tämän aineiston tarkemmat metodikuvaukset löytyvät artikkeleista (Holmberg et al. 2023, Junttila et al. 2023). Tässä on kuvattu aineistoa ja sen valmistelua. Tarkoituksena on ollut tuottaa alueellista tietoa maanpeitteen merkityksestä kasvihuonekaasupäästöihin Suomessa. Lähtöaineisto ja metodit rajoittavat tarkkuutta, mutta aineisto soveltuu paikallisten, esimerkiksi maakuntatason ilmiöiden tarkasteluun. Aineisto edustaa lyhyttä ajanjaksoa. Maanpeiteaineisto perustuu rekisteritietoihin ja kaukokartoitusaineistoon vuosilta 2015-2020, lukuun ottamatta maaperäaineistoa, jokia ja järviä. Aineisto on rasterimuotoista ja tallennettu GeoTiff-formaatissa, joka on yhteensopiva useimpien paikkatieto-ohjelmistojen kanssa. Greenhouse gas net emission intensities by land cover category in Finland The methods related to the data published herein are described in detail in the associated publications (Holmberg et al. 2023, Junttila et al. 2023). This file describes the datasets and the data preparation steps. The aim of this data publication is to provide regional assessments of the role of land cover in greenhouse gas emissions in Finland. The results in the publications are reported for the large administrative divisions, the NUTS 3 regions of mainland Finland (Statistics Finland 2023a). While limited by the accuracy of the methods and source data involved, these data can also be used for more local assessments, e.g., at the scale of municipalities. The data represent a temporal snapshot of land cover. Except for the soil maps, rivers and lakes, all land cover data are from the period 2015-2020 and are based on registry data or remote sensing. Data format. The data are distributed as GeoTiff raster files, which can be read using most GIS-software.
-
KUVAUS: Karttatason kohteet ovat peräisin LUMO-asukaskyselystä marraskuulta 2024. Aineisto on kerätty Fiilis-karttakyselyllä (Ilmasto- ja ympäristöpolitiikan yksikkö). Kysely oli osa lumo-ohjelman päivityksen vuorovaikutusprosessia. Vastaajaa pyydettiin merkitsemään kartalle pisteitä tai alueita, joissa on havainnut 1) myönteisiä muutoksia tai 2) kielteisiä muutoksia luonnon monimuotoisuudessa viimeisen neljän vuoden aikana. Kartalle sai myös merkitä pisteitä tai alueita, joissa olisi halukas itse toimimaan luonnon monimuotoisuuden parantamiseksi. Kyselyn vastaajamäärä oli 570 hlö. Kyselyyn pystyi vastaamaan joko suomeksi tai englanniksi. Vastaajien anonyymit taustatiedot on tarvittaessa saatavilla datan yhteyshenkilöltä. KATTAVUUS: Tampere YLLÄPITO: Kyseessä on poikkileikkausaineisto (Aineisto ei päivity). KOORDINAATTIJÄRJESTELMÄ: Aineisto tallennetaan ETRS-GK24 (EPSG:3878) tasokoordinaattijärjestelmässä. GEOMETRIA: vektori (pisteitä ja alueita) SAATAVUUS: Aineisto on katsottavissa kirjautuneille käyttäjille Oskari-karttapalvelussa. AINEISTOSTA VASTAAVA TAHO: Tampereen kaupunki, Ilmasto- ja ympäristöpolitiikan yksikkö
-
This dataset represents the integrated assessment of hazardous substances in the Baltic Sea in 2011-2016, assessed using the CHASE tool (https://github.com/helcomsecretariat/CHASE-integration-tool). The integration is based on hazardous substances core indicators covering concentrations of hazardous substances. This dataset displays the result of the assessment in HELCOM Assessment unit Level 3 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and offshore areas). Attribute information: "HELCOM_ID" = ID of the HELCOM scale 3 assessment unit "country" = Country/ opensea "level_3" = Name of the HELCOM scale 3 assessment unit "area_km2 = Area of the HELCOM scale 3 assessment unit "AULEVEL" = Scale of the assessment units "coastal" = Code of scale 3 HELCOM assessment unit "Input" = Contamination ratio of the assessment unit (Higher score indicates higher contamination) "Confidence" = Confidence of the assessment (Low/ Moderate/ High/ Not assessed) "Status" = Status value for the assessment (= 1.0: Low contamination score, > 1.0: High contaminantion score)
-
KUVAUS: Karttataso sisältää sekajätteen keräysalueet, jotka tulevat voimaan kuudessa vaiheessa 31.12.2029 mennessä, sekä nykyisen voimassa olevan sekajätteen keräysalueen. PÄIVITYS: Satunnainen (vain tarvittaessa). YLLÄPITOSOVELLUS: Tampereen kaupungin tiedostopalvelin ja PostGIS-tietokanta KOORDINAATTIJÄRJESTELMÄ: Aineisto tallennetaan ETRS-GK24FIN (EPSG:3878) tasokoordinaattijärjestelmässä GEOMETRIA: vektori (alue) SAATAVUUS: Aineisto on tallennettu Postgis-tietokantaan. JULKISUUS: Aineisto on nähtävillä julkisesti kaikille käyttäjille Oskari-karttapalvelussa. TIETOSUOJA: Aineistoon ei liity tietosuojakysymyksiä. AINEISTOSTA VASTAAVA TAHO: Tampereen kaupunki, Alueellinen jätehuoltolautakunta, jatehuoltolautakunta@tampere.fi
-
-
Laser scanning data refers to three-dimensional point-like data depicting the ground and objects on the ground. Each point is provided with x, y and z coordinate information. Laser scanning data is collected i.a. for updating elevation models, creating 3D geometries of buildings, mapping flood risks, and collecting information about forest resources. The terms of use must be approved to use laser scanning data.
-
KUVAUS: Jätehuoltomääräysten biojätteen velvoitealue. Tampereen keskustaajaman alue esitetään kartalla keltaisella. Tampereen keskustaajamassa velvoite on ollut voimassa 1.9.2023 alkaen. Biojätteen velvoitealueen laajennusalueet esitetään kartalla sinisellä. Laajennusalueiden velvoite tulee voimaan siirtymäajan jälkeen, 30.9.2025 mennessä. PÄIVITYS: Satunnainen (vain tarvittaessa). YLLÄPITOSOVELLUS: Tampereen kaupungin tiedostopalvelin ja PostGIS-tietokanta KOORDINAATTIJÄRJESTELMÄ: Aineisto tallennetaan ETRS-GK24FIN (EPSG:3878) tasokoordinaattijärjestelmässä GEOMETRIA: vektori (alue) SAATAVUUS: Aineisto on tallennettu Postgis-tietokantaan. JULKISUUS: Aineisto on nähtävillä julkisesti kaikille käyttäjille Oskari-karttapalvelussa. TIETOSUOJA: Aineistoon ei liity tietosuojakysymyksiä. AINEISTOSTA VASTAAVA TAHO: Tampereen kaupunki, Alueellinen jätehuoltolautakunta, jatehuoltolautakunta@tampere.fi
-
The raw materials of forest chips are small-diameter trees from thinning fellings and logging residues and stumps from final fellings. The harvesting potential consists of biomass that would be available after technical and economic constraints. Such constraints include, e.g., minimum removal of energywood per hectare, site fertility and recovery rate. Note that the techno-economic potential is usually higher than the actual availability, which depends on forest owners’ willingness to sell and competitive situation. The harvesting potentials were estimated using the sample plots of the 12th national forest inventory (NFI12) measured in the years 2014–2018. First, a large number of sound and sustainable management schedules for five consecutive ten-year periods were simulated for each sample plot using a large-scale Finnish forest planning system known as MELA (Siitonen et al. 1996; Hirvelä et al. 2017; http://mela2.metla.fi/mela/tupa/index-en.php). MELA simulations consisted of natural processes and human actions. The ingrowth, growth, and mortality of trees were predicted based on a set of distance-independent tree-level statistical models (e.g. Hynynen et al. 2002) included in MELA and the simulation of the stand (sample plot)-level management actions was based on the current Finnish silvicultural guidelines (Äijälä et al. 2014) and the guidelines for harvesting of energy wood (Koistinen et al. 2016). Future potentials were assumed to materialize when the industrial roundwood fellings followed the level of maximum sustained yield (79 mill. m3 in this calculation). The maximum sustained yield was defined such that the net present value calculated with a 4% discount rate was maximized subject to non-declining periodic industrial roundwood and energy wood removals and net incomes, and subject to the saw log removal remaining at least at the level of the first period. There were no constraints concerning tree species selection, cutting methods, age classes, or the growth/drain ratio in order to efficiently utilize the dynamics of forest structure. The potential for energywood from thinnings was calculated separately for all the energywood from thinnings (Stemwood for energy from thinnings) and for material that does not fulfill the size-requirements for pulpwood (Stemwood for energy from thinnings (smaller than pulpwood-sized trees)). Note that the decision whether pulpwood-sized thinning wood is directed to energy or industrial use, is based on the optimisation by MELA. The minimum top diameter of pulpwood in the calculation was 6.3 cm for pine (Pinus sylvestris) and 6.5 cm for spruce (Picea abies) and broadleaved species (mainly Betula pendula, B. pubescens, Populus tremula, Alnus incana, A. glutinosa and Salix spp.). The minimum length of a pulpwood log was assumed at 2.0 m. Energywood could be harvested as whole trees or as delimbed. The dry-matter loss in the supply chain was assumed at 5%. The potentials for logging residues and stumps were calculated as follows: The crown biomass removals of clear fellings were obtained from MELA. According to harvesting guidelines for energywood (Koistinen et al. 2016) mineral soils classified as sub-xeric (or weaker) and peatlands with corresponding low nutrient levels were left out from the potentials. Next, technical recovery rates were applied (70% for logging residues and 82-84% for stumps) (Koistinen et al. 2016; Muinonen et al. 2013). Finally, a dry-matter loss of 20% and 5% was assumed for residues and stumps, respectively. The techno-economical harvesting potentials were first calculated for nineteen Finnish regions and then distributed on a raster grid at 1 km × 1 km resolution by weighting with Multi-Source NFI biomasses as described by Anttila et al. (2018). The potentials represent time period 2026-2035 and are presented as average annual potentials in solid cubic metres over bark. References Äijälä O, Koistinen A, Sved J, Vanhatalo K, Väisänen P. 2014. Metsänhoidon suositukset. [Guidelines for sustainable forest management]. Metsätalouden kehittämiskeskus Tapion julkaisuja. Anttila P., Nivala V., Salminen O., Hurskainen M., Kärki J., Lindroos T.J. & Asikainen A. 2018. Regional balance of forest chip supply and demand in Finland in 2030. Silva Fennica vol. 52 no. 2 article id 9902. 20 s. https://doi.org/10.14214/sf.9902 Hirvelä, H., Härkönen, K., Lempinen, R., Salminen, O. 2017. MELA2016 Reference Manual. Natural Resources Institute Finland (Luke). 547 p. Hynynen J, Ojansuu R, Hökkä H, Salminen H, Siipilehto J, Haapala P. 2002. Models for predicting the stand development – description of biological processes in MELA system. The Finnish Forest Research Institute Research Papers. 835. Koistinen A, Luiro J, Vanhatalo K. 2016. Metsänhoidon suositukset energiapuun korjuuseen, työopas. [Guidelines for sustainable harvesting of energy wood]. Tapion julkaisuja. Muinonen E., Anttila P., Heinonen J., Mustonen J. 2013. Estimating the bioenergy potential of forest chips from final fellings in Central Finland based on biomass maps and spatially explicit constraints. Silva Fennica 47(4) article 1022. https://doi.org/10.14214/sf.1022. Siitonen M, Härkönen K, Hirvelä H, Jämsä J, Kilpeläinen H, Salminen O et al. 1996. MELA Handbook. 622. 951-40-1543-6.
Paikkatietohakemisto