Type
 

dataset

1647 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
From 1 - 10 / 1647
  • FIN Aineiston tarkoituksena on: -Identifioida tie- ja rata-alueet, joiden varrella esiintyy uhanalaisia ja silmälläpidettäviä lajeja -Identifioida tie- ja rata-alueet, joiden varrella esiintyy hyviä elinvoimaisia niittyindikaattorilajeja (hyönteisten mesi- ja ravintokasveja) -Identifioida tie- ja rata-alueet, joiden varrella esiintyy suojelualueita -Identifioida tie- ja rata-alueet, joiden varrella esiintyy komealupiinia tai kurtturuusua -Identifioida tie- ja rata-alueet, joiden varrella esiintyy komealupiinia tai kurtturuusua uhanalaisten lajien lisäksi -> Löytää herkät alueet ja paikallistaa vieraslajien uhka Tieto esitetään 1 kilometrin ruuduissa. Aineistosta on julkaistu kaksi erillistä versiota. -VaylanvarsienVieraslajitJaArvokkaatElinymparistot_avoin: Avoin versio, jonka lajitietoa on karkeistettu mahdollisista herkistä lajeista johtuen. Aineisto kuuluu SYKEn avoimiin aineistoihin (CC BY 4.0) ja sitä saa käyttää lisenssiehtojen mukaisesti -VaylanvarsienVieraslajitJaArvokkaatElinymparistot_kayttorajoitettu: Alkuperäinen karkeistamaton versio. Tämä versio on vain viranomaiskäyttöön eikä kyseistä aineistoa saa jakaa Aineistosta on tehty tarkempi menetelmäkuvaus https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/VierasVayla_Menetelmakuvaus.pdf sekä muuttujaseloste https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/VierasVayla_VariableDescription.xlsx ENG The purpose of the material is to: -Identify road and rail areas that have nearby observations of endangered and near threatened species -Identify road and rail areas with good meadow indicator plant species -Identify road and rail areas along which there are protected areas -Identify the road and rail areas along which there are observations of Lupinus polyphyllus or Rosa rugosa observations -Identify the road and rail areas along which there are Lupinus polyphyllus or Rosa rugosa observations in addition to sensitive species -> Finds sensitive areas and identify the overall threat of alien species The data is presented in 1-kilometer square grid cells. There are two separate versions of the data. -VaylanvarsienVieraslajitJaArvokkaatElinymparistot_avoin: Open access version, in which its species-related parts have been simplified due to data restriction issues. The material belongs to Syke's open materials (CC BY 4.0) and may be used in accordance with the license terms. -VaylanvarsienVieraslajitJaArvokkaatElinymparistot_kayttorajoitettu: Original version. This version is only for official use and the material in question may not be shared. A more precise description about the data procedures can be found from (In Finnish) https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/VierasVayla_Menetelmakuvaus.pdf Furthermore, all the variables in the data are explained in this bilingual variable description https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/VierasVayla_VariableDescription.xlsx This dataset was updated with the newest species observations on 10/2023 and 11/2024 Process code for this can be found from https://github.com/PossibleSolutions/VierasVayla_SpeciesUpdate

  • Categories  

    The Bio-geographical provinces are internally homogeneous biogeographical regions of Finland. The number of regions is 21. The regions were spatially defined by an expert committee in 1930 as collections of municipalities. Consequently, the province boundaries follow the delineation of of municipalities in the 1930's including some enclaves, exclaves, and narrow stripes as the province boundaries have not been changed or updated since then excluding the cession of territory after the Second World War. All regions have names and abbreviations in Finnish, Swedish, and Latin. No other attribute data is available.

  • This dataset represents the integrated assessment of hazardous substances in the Baltic Sea in 2011-2016, assessed using the CHASE tool (https://github.com/helcomsecretariat/CHASE-integration-tool). The integration is based on hazardous substances core indicators covering concentrations of hazardous substances. This dataset displays the result of the assessment in HELCOM Assessment unit Level 3 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and offshore areas). Attribute information: "HELCOM_ID" = ID of the HELCOM scale 3 assessment unit "country" = Country/ opensea "level_3" = Name of the HELCOM scale 3 assessment unit "area_km2 = Area of the HELCOM scale 3 assessment unit "AULEVEL" = Scale of the assessment units "coastal" = Code of scale 3 HELCOM assessment unit "Input" = Contamination ratio of the assessment unit (Higher score indicates higher contamination) "Confidence" = Confidence of the assessment (Low/ Moderate/ High/ Not assessed) "Status" = Status value for the assessment (= 1.0: Low contamination score, > 1.0: High contaminantion score)

  • This dataset represents the Integrated biodiversity status assessment for benthic habitats using the BEAT tool. Status is shown in five categories based on the integrated assessment scores obtained in the tool. Biological Quality Ratios (BQR) above 0.6 correspond to good status. The assessment in open sea areas was based on the core indicators ‘State of the soft-bottom macrofauna community’ and ‘Oxygen debt’. Coastal areas were assessed by national indicators, and may hence not be directly comparable with each other. This dataset displays the result of the integrated biodiverity status in HELCOM Assessment unit Scale 4 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and off-shore areas and division of the coastal areas by WFD water types or water bodies). Attribute information: "BQR" = Biological Quality Ratio "Confidence" = Confidence of the assessment "HELCOM_ID" = id of the HELCOM assessment unit "country" = name of the country / opensea "level_2" = HELCOM sub-basins (name of the scale 2 assessment unit) "Name" = Name of the coastal assessment unit on scale 4 "AULEVEL" = scale of the assessment units "type_descr" = Name of the HELCOM scale 4 assessment unit "SAUID" = ID number for the spatial assessment unit "EcosystemC" = Ecosystem component assessed "Confiden_1" = Confidence of the assessment (0-1, higher values mean higher confidence) "Total_numb" = Number of indicators used in assessment "Area_km2" = Area of assessment unit (km2) "Confiden_1" = Confidence level of the assessment (scores < 0.5 = low, 0.5 - 0.75 = intermediate, > 0.75 = high) "STATUS" = Integrated status category (0-0.2 = not good (lowest score), 0.2-0.4 = not good (lower score), 0.4-0.6 = not good (low score), 0.6-0.8 = good (high score), 0.8-1.0 = good (highest score))

  • This dataset contains integrated eutrophication status assessment 2011-2016. The assessment is done using the HEAT 3.0 by combining assessment unit-specific results from various indicators by three MSFD criteria groups (C1: Nutrient levels, C2: Direct effect, C3: Indirect effect). The assessment is done on HELCOM Assessment Unit level 4: HELCOM Subbasins with coastal WFD water type or water bodies. The HEAT 3.0 has been applied for open sea assessment units using HELCOM core indicators and for coastal areas using national WFD indicators. In case of Denmark, the WFD results were used directly, displaying different classification as obtained from HEAT. For more information about the methodology, see the State of the Baltic Sea report and HELCOM Eutrophication assessment manual. Attribute information: "HELCOM_ID": ID of the HELCOM Level 4 Assessment unit "Country": Country/ Opensea "level_2": Name of the HELCOM Level 2 Assessment unit "Name": Name of the HELCOM Level 4 Assessment unit "Area_km2": Area of assessment unit "C1_N": MSFD criteria 1, number of indicators used for calculating Eutrophication Ratio (ER) "C1_ER": MSFD Criteria 1, ER "C1_SCORE": MSFD Criteria 1, Confidence of ER "C2_N": MSFD Criteria 2, number of indicators used for calculating ER "C2_ER": MSFD Criteria 2, ER "C2_SCORE": MSFD Criteria 2, Confidence of ER "C3_N": MSFD Criteria 3, number of indicators used for calculating ER "C3_ER": MSFD Criteria 3, ER "C3_SCORE": Criteria 3, Confidence of ER "N": Number of criteria used for calculating overall ER "ER": Overall ER "SCORE": Status confidence "STATUS": Status classification (Good (classes 0-0.5 & 0.5-1.0), Not Good (classes 1.0-1.5, 1.5-2.0 & >2.0), Not assessed) "CONFIDENCE": Final confidence class (< 50% = low, 50-74 % = Moderate, = 75 % = High) "AULEVEL": Level of assessment units

  • This dataset represents the Integrated biodiversity status assessment for fish used in State of the Baltic Sea – Second HELCOM holistic assessment 2011-2016. Status is shown in five categories based on the integrated assessment scores obtained in the BEAT tool. Biological Quality ratios (BQR) above 0.6 correspond to good status. The assessment is based on core indicators of coastal fish in coastal areas, and on internationally assessed commercial fish in the open sea. The open sea assessment includes fishing mortality and spawning stock biomass as an average over 2011–2016. Open sea results are given by ICES subdivisions, and are not shown where they overlap with coastal areas. Coastal areas results are given in HELCOM Assessment unit Scale 3 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and off-shore areas) Attribute information: "COUNTRY" = name of the country / opensea "Name" = Name of the coastal assessment unit, scale 3 (empty for ICES open sea units) "HELCOM_ID" = ID of the HELCOM scale 3 assessment unit (empty for ICES open sea units) "EcoystemC" = Ecosystem component analyzed "BQR" = Biological Quality Ratio "Conf" = Confidence (0-1, higher values mean higher confidence) "Total_indi" = Number of HELCOM core indicators included (coastal assessment units) "F__of_area = % of area assessed "D1C2" = MSFD descriptor 1 criteria 2 "Number_of" = Number of open sea species included "Confidence" = Confidence of the assessment "BQR_Demer" = Demersal Biological Quality Ratio "F_spec_Deme" = Number of demersal species included "Conf_Demer" = Confidence for demersal species "BQR_Pelagi" = Pelagic Biological Quality Ratio "F_specPela" = Number of pelagic species included "Conf_Pelag" = Confidence for pelagic species "ICES_SD" = ICES Subdivision number "STATUS" = Integrated status category (0-0.2 = not good (lowest score), 0.2-0.4 = not good (lower score), 0.4-0.6 = not good (low score), 0.6-0.8 = good (high score, 0.8-1.0 = good (highest score))

  • The EMODnet (European Marine Observation and Data network) Geology project collects and harmonizes marine geological data from the European sea areas to support decision making and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at various scales from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This dataset includes EMODnet seabed substrate maps at a scale of 1:30 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonised into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. Further information about the EMODnet Geology project is available on the portal (http://www.emodnet-geology.eu/).

  • Categories  

    This assessment was part of project Baltic ForBio funded by the Interreg Baltic Sea Region Programme (https://www.slu.se/en/departments/forest-economics/forskning/research-projects/baltic-forbio/). The project was carried out in 2017-2020. The harvesting potentials in Finland were calculated for the following assortments: • Stemwood for energy from 1st thinnings, pine • Stemwood for energy from 1st thinnings, spruce • Stemwood for energy from 1st thinnings, broadleaved • Stemwood for energy from 1st thinnings (smaller than pulpwood-sized trees), pine • Stemwood for energy from 1st thinnings (smaller than pulpwood-sized trees), spruce • Stemwood for energy from 1st thinnings (smaller than pulpwood-sized trees), broadleaved • Logging residues, pine • Logging residues, spruce • Logging residues, deciduos • Stumps, pine • Stumps, spruce. 1.1 Decision support system used in assessment Regional energywood potentials were calculated with MELA forest planning tool (Siitonen et al. 1996; Hirvelä et al. 2017). 1.2 References and further reading Anttila P., Muinonen E., Laitila J. 2013. Nostoalueen kannoista jää viidennes maahan. [One fifth of the stumps on a stump harvesting area stays in the ground]. BioEnergia 3: 10–11. Anttila P., Nivala V., Salminen O., Hurskainen M., Kärki J., Lindroos T.J. & Asikainen A. 2018. Re-gional balance of forest chip supply and demand in Finland in 2030. Silva Fennica vol. 52 no. 2 article id 9902. 20 p. https://doi.org/10.14214/sf.9902 Hakkila, P. 1978. Pienpuun korjuu polttoaineeksi. Summary: Harvesting small-sized wood for fuel. Folia Forestalia 342. 38 p. Hirvelä, H., Härkönen, K., Lempinen, R., Salminen, O. 2017. MELA2016 Reference Manual. Natural Resources Institute Finland (Luke). 547 p. Hynynen, J., Ojansuu, R., Hökkä, H., Siipilehto, J., Salminen, H. & Haapala, P. 2002. Models for predicting stand development in MELA System. Metsäntutkimuslaitoksen tiedonantoja 835. 116 p. Koistinen A., Luiro J., Vanhatalo K. 2016. Metsänhoidon suositukset energiapuun korjuuseen, työopas. [Guidelines for sustainable harvesting of energy wood]. Metsäkustannus Oy, Helsinki. ISBN 978-952-5632-35-4. 74 p. Mäkisara, K., Katila, M., Peräsaari, J. 2019: The Multi-Source National Forest Inventory of Finland - methods and results 2015. Muinonen E., Anttila P., Heinonen J., Mustonen J. 2013. Estimating the bioenergy potential of forest chips from final fellings in Central Finland based on biomass maps and spatially explicit constraints. Silva Fennica 47(4) article 1022. https://doi.org/10.14214/sf.1022. Natural Resources Institute Finland. 2019. Industrial roundwood removals by region. Available at: http://stat.luke.fi/en/industrial-roundwood-removals-by-region. Accessed 22 Nov 2019. Ruotsalainen, M. 2007. Hyvän metsänhoidon suositukset turvemaille. Metsätalouden kehittämiskeskus Tapio julkaisusarja 26. Metsäkustannus Oy, Helsinki. 51 p. ISBN 978-952-5694-16-1, ISSN 1239-6117. Siitonen M, Härkönen K, Hirvelä H, Jämsä J, Kilpeläinen H, Salminen O et al. 1996. MELA Handbook. 622. 951-40-1543-6. Äijälä, O., Kuusinen, M. & Koistinen, A. (eds.). 2010. Hyvän metsänhoidon suositukset: energiapuun korjuu ja kasvatus. Metsätalouden kehittämiskeskus Tapion julkaisusarja 30. 56 p. ISBN 978-952-5694-59-8, ISSN 1239-6117. Äijälä, O., Koistinen, A., Sved, J., Vanhatalo, K. & Väisänen, P. (eds). 2014. Metsänhoidon suositukset. Metsätalouden kehittämiskeskus Tapion julkaisuja. 180 p. ISBN 978-952-6612-32-4. 2. Output considered in assessment Valid for scenario: Maximum sustainable removal Main output ☒Small-diameter trees ☒Stemwood for energy ☒Logging residues ☒Stumps ☐Bark ☐Pulpwood ☐Saw logs Additional information Stemwood for energy from 1st thinnings. Part of this potential consists of trees smaller than pulpwood size. This part is reported as Small-diameter trees. Forecast period for the biomass supply assessment Start year: 2015 End year: 2044 Results presented for period 2025-2034 3. Description of scenarios included in the assessments Maximum sustainable removal The maximum sustainable removal is defined by maximizing the net present value with 4% discount rate subject to non-declining periodic total roundwood removals, energy wood removals and net incomes, further the saw log removals have to remain at least at the level of the first period. There are no sustainability constraints concerning tree species, cutting methods, age classes or the growth/drain -ratio in order to efficiently utilize the dynamics of forest structure. Energy wood removal can consist of stems, cutting residues, stumps and roots. According to the scenario the total annual harvesting potential of industrial roundwood is 80.7 mill. m3 (over bark) for period 2025-2034. In 2018 removals of industrial roundwood in Finland totaled 68.9 mill. m3 (Natural Resources… 2019). 4. Forest data characteristics Level of detail on forest description ☒High ☐Medium ☐Low NFI data with many and detailed variables down to tree parts. Sample plot based ☒Yes ☐No NFI sample plot data from 2013-2017. Stand based ☐Yes ☒No Grid based ☒Yes ☐No Multi-Source NFI data from 2015 (Mäkisara et al. 2019) utilized when distributing regional potentials to 1 km2 resolution. 5. Forest available for wood supply: Total forest area defined as in: FAO. 2012. FRA 2015, Terms and Definitions. Forest Resources Assessment Working Paper 180. 36 p. Available at: http://www.fao.org/3/ap862e/ap862e00.pdf. Forest and scrub land 22 812 000 ha Forest land 20 278 000 ha and scrub land 2 534 000 ha Forest area not available for wood supply Forest and scrub land 2 979 000 ha Forest land 1 849 000 ha and scrub land 1 130 000 ha Partly available for wood supply Forest and scrub land 2 553 000 ha (includes in FAWS, below) Forest land 1 149 000 ha and scrub land 1 404 000 ha. Forest Available for wood supply (FAWS) Forest and scrub land 19 833 000 ha Forest land 18 429 000 ha and scrub land 1 404 000 ha In MELA calculations all the scrub land belonging to the FAWS belongs to the category “Partly available for wood supply”, but there are no logging events on scrub land regardless or the category. 6. Temporal allocation of fellings Valid for scenario: Maximum sustainable removal Allocation method ☐Optimization based without even flow constraints ☒Optimization based with even flow constraints ☐Rule based with no harvest target ☐Rule based with static harvest target ☐Rule based with dynamic harvest target See item 3 above (max NPV with 4 % discount rate). 7. Forest management Valid for scenario: Maximum sustainable removal Representation of forest management ☐Rule based ☒Optimization ☐Implicit Treatments, among of the optimization makes the selections, are based on management guidelines (e.g. Äijälä etc 2014) 7.2 General assumptions on forest management Valid for scenario: Maximum sustainable removal ☒Complies with current legal requirements ☐Complies with certification ☒Represents current practices ☐None of the above ☐ No information available Forest management follows science-based guidelines of sustainable forest management (Ruotsalainen 2007, Äijälä et al. 2010, Äijälä et al. 2014). 7.3 Detailed assumptions on natural processes and forest management Valid for scenario: Maximum sustainable removal Natural processes ☒Tree growth ☒Tree decay ☒Tree death ☐Other? Tree-level models (e.g. Hynynen et al., 2002). Silvicultural system ☒Even-aged ☐Uneven-aged Click here to enter text. Regeneration method ☒Artificial ☒Natural Regeneration species ☐Current distribution ☒Changed distribution Optimal distribution may differ from the current one. Genetically improved plant material ☐Yes ☒No Cleaning ☒Yes ☐No Thinning ☒Yes ☐No Fertilization ☐Yes ☒No 7.4 Detailed constraints on biomass supply Volume or area left on site at final felling ☒Yes ☐No 5 m3/ha retained trees are left in final fellings. Final fellings can be carried out only on FAWS with no restrictions for wood supply. Constraints for residues extraction ☒Yes ☐No ☐N/A Retention of 30% of logging residues onsite (Koistinen et al. 2016) Constraints for stump extraction ☒Yes ☐No ☐N/A Retention of 16–18% of stump biomass (Muinonen et al. 2013; Anttila et al. 2013) 8. External factors Valid for scenario: Maximum sustainable removal External factors besides forest management having effect on outcomes Economy ☐Yes ☒No Climate change ☐Yes ☒No Calamities ☐Yes ☒No Other external ☐Yes ☒No

  • The Superficial deposits 1:20 000 / 1:50 000 data include material produced during the period 1972-2007 for land use planning, for the mapping and inventory of the natural resources as well as for environmental management and for scientific research. The main mapping scale has been 1:10 000. The data contains a sediment as a basal deposit at a depth of one metre. The minimum size of the basal deposit polygon is two hectares, with islands, mire and field enclosures, as well as geologically significant sites as an exception. The 0.4-0.9 m thick layers are described as overlying the basal deposit and, in geologically or economically significant cases, such layers could be even thicker. The minimum polygon size of the overlying deposit is usually four hectares. Thin covering layers under 0.4 m in thickness, which are difficult to delimit but effect an area of at least four hectares, are displayed as point data. Besides the deposits Quaternary geological formations formed in different ways, such as eskers and hummocky moraines, are described in the data. Other mapping sites such as small rock exposures, dunes and raised beaches are shown as point or line data. Coordinate reference system of the Superficial deposits 1:20 000 / 1:50 000 was transformed in March 2013. The transformation from Finnish National Grid Coordinate System (Kartastokoordinaattijärjestelmä, KKJ) Uniform Coordinate Frame to ETRS-TM35FIN projection was done by using the three-dimensional transformation in accordance with the recommendations for the public administration JHS154.

  • Seabed substrate 1:250 000 is one of the products produced in the EMODnet (European Marine Observation and Data network) Geology EU project. Project provided seabed geological material from the European maritime areas. The EMODnet Geology project (http://www.emodnet-geology.eu/) collects and harmonizes geological data from the European sea areas to support decision-making and sustainable marine spatial planning. The EMODnet Geology partnership has included 36 marine organizations from 30 countries. This data includes the EMODnet seabed substrate map at a scale of 1:250 000 from the Finnish marine areas. It is based on the data produced on a scale of 1:20 000 by the Geological Survey of Finland (GTK), which does not cover the whole Finnish marine area yet. The seabed substrate data will be updated with a new interpreted data on a yearly basis.The data has been harmonized and reclassified into five Folk substrate classes (mud, sandy clays, clayey sands, coarse sediments, mixed sediments) and bedrock. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. The data have been generalized into a target scale (1:250 000). The smallest smallest cartographic unit within the data is 0.3 km2 (30 hectares). Further information about the EMODnet-Geology project is available on the portal (http://www.emodnet-geology.eu/). Permission (AK15246) to publish the material was obtained from the Finnish Defence Office 28.07.2014