Type
 

dataset

992 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
From 1 - 10 / 992
  • This dataset contains points of information describing the location and size of other discharges than illegal oil discharges observed during aerial surveillance flights by HELCOM Contracting Parties 2014-2017. Further information about illegal discharges of oil in the Baltic Sea area and HELCOM aerial surveillance activities can be found at http://www.helcom.fi/baltic-sea-trends/maritime/illegal-spills/ The dataset contains the following information: Country Year Spill_ID= Spill ID FlightType= The type of flight the detection was made during: National = "N", CEPCO = "C", Super CEPCO = "S" Date= The date of the detection (dd.mm.yyyy) Time_UTC= The time of the detection (hh:mm) Wind_speed= The wind speed at the time of the detection (m/s) Wind_direc= The wind direction at the time of the detection (degrees) Latitude= The latitude of the detection (decimal degrees) Longitude= The longitude of the detection (decimal degrees) Length__km= The length of the detection (km) Width__km= The width of the detection (km) Area__km2_= The area of the detection (km2) Spill_cat= The category of the detection: other substance = "OS", unknown substance = "UNKNOWN" EstimVol_m= Estimated volume of the detection (m3) Polluter= Polluter (rig, ship, other, unknown) Category= Category of the detection: 100m3 = "5" Casefile= The name of the casefile the detection refers to Remarks= Any additional information

  • This dataset represents the Integrated biodiversity status assessment for fish used in State of the Baltic Sea – Second HELCOM holistic assessment 2011-2016. Status is shown in five categories based on the integrated assessment scores obtained in the BEAT tool. Biological Quality ratios (BQR) above 0.6 correspond to good status. The assessment is based on core indicators of coastal fish in coastal areas, and on internationally assessed commercial fish in the open sea. The open sea assessment includes fishing mortality and spawning stock biomass as an average over 2011–2016. Open sea results are given by ICES subdivisions, and are not shown where they overlap with coastal areas. Coastal areas results are given in HELCOM Assessment unit Scale 3 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and off-shore areas) Attribute information: "COUNTRY" = name of the country / opensea "Name" = Name of the coastal assessment unit, scale 3 (empty for ICES open sea units) "HELCOM_ID" = ID of the HELCOM scale 3 assessment unit (empty for ICES open sea units) "EcoystemC" = Ecosystem component analyzed "BQR" = Biological Quality Ratio "Conf" = Confidence (0-1, higher values mean higher confidence) "Total_indi" = Number of HELCOM core indicators included (coastal assessment units) "F__of_area = % of area assessed "D1C2" = MSFD descriptor 1 criteria 2 "Number_of" = Number of open sea species included "Confidence" = Confidence of the assessment "BQR_Demer" = Demersal Biological Quality Ratio "F_spec_Deme" = Number of demersal species included "Conf_Demer" = Confidence for demersal species "BQR_Pelagi" = Pelagic Biological Quality Ratio "F_specPela" = Number of pelagic species included "Conf_Pelag" = Confidence for pelagic species "ICES_SD" = ICES Subdivision number "STATUS" = Integrated status category (0-0.2 = not good (lowest score), 0.2-0.4 = not good (lower score), 0.4-0.6 = not good (low score), 0.6-0.8 = good (high score, 0.8-1.0 = good (highest score))

  • Categories  

    Sedimentation rates are part of EMODnet 3 (European Marine Observation and Data network) Geology, Work Package 3 (WP3) Seabed substrate. The objective of WP3 is to compile all available seabed substrate information on a scale of 1:100 000 or finer from all European seabed areas, and to update sedimentation rate data collected in the previous phases. WP3 has compiled and harmonized all available information on the rate of sedimentation on the seafloor. The information on sedimentation rates for recent sediments is presented as point-source information. Estimations of modern sedimentation rates (centimetres/year) can be based e.g. on established historical records of anthropogenic radionuclides (e.g. 137Cs and 241Am), polychlorinated biphenyls (PCBs), lead (Pb) and stable lead isotope (206/207Pb ratios). Sedimentation rate estimations can be based also on varve/laminae counting, radionuclide 210Pb and 14C decay dating methods. In addition stratigraphic marker horizons, like in the Baltic Sea, horizons formed by documented Major Baltic Inflow (MBIs) events (Moros et al. 2017), can be used in the estimations. Project partners have delivered information on accumulation/sedimentation rates available in their national waters including their EEZ. Here we focus on modern/present day sedimentation rates. That mean sedimentation rates over the past decades, since AD 1900 or so. Further information about the EMODnet-Geology project is available on the portal (http://www.emodnet-geology.eu/).

  • This dataset represents the integrated assessment of hazardous substances in the Baltic Sea in 2011-2016, assessed using the CHASE tool (https://github.com/helcomsecretariat/CHASE-integration-tool). The integration is based on hazardous substances core indicators covering concentrations of hazardous substances. This dataset displays the result of the assessment in HELCOM Assessment unit Level 3 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and offshore areas). Attribute information: "HELCOM_ID" = ID of the HELCOM scale 3 assessment unit "country" = Country/ opensea "level_3" = Name of the HELCOM scale 3 assessment unit "area_km2 = Area of the HELCOM scale 3 assessment unit "AULEVEL" = Scale of the assessment units "coastal" = Code of scale 3 HELCOM assessment unit "Input" = Contamination ratio of the assessment unit (Higher score indicates higher contamination) "Confidence" = Confidence of the assessment (Low/ Moderate/ High/ Not assessed) "Status" = Status value for the assessment (= 1.0: Low contamination score, > 1.0: High contaminantion score)

  • Categories  

    The Bio-geographical regions are internally homogeneous biogeographical regions of Finland. The number of regions is 21. The regions were spatially defined by an expert committee in 1930 as collections of municipalities. Consequently, the province boundaries follow the delineation of of municipalities in the 1930's including some enclaves, exclaves, and narrow stripes as the province boundaries have not been changed or updated since then excluding the cession of territory after the Second World War. In the "Extended" data set regions have names and abbreviations in Finnish, Swedish, and Latin. No other attribute data is available.

  • This dataset represents the Integrated biodiversity status assessment for benthic habitats using the BEAT tool. Status is shown in five categories based on the integrated assessment scores obtained in the tool. Biological Quality Ratios (BQR) above 0.6 correspond to good status. The assessment in open sea areas was based on the core indicators ‘State of the soft-bottom macrofauna community’ and ‘Oxygen debt’. Coastal areas were assessed by national indicators, and may hence not be directly comparable with each other. This dataset displays the result of the integrated biodiverity status in HELCOM Assessment unit Scale 4 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and off-shore areas and division of the coastal areas by WFD water types or water bodies). Attribute information: "BQR" = Biological Quality Ratio "Confidence" = Confidence of the assessment "HELCOM_ID" = id of the HELCOM assessment unit "country" = name of the country / opensea "level_2" = HELCOM sub-basins (name of the scale 2 assessment unit) "Name" = Name of the coastal assessment unit on scale 4 "AULEVEL" = scale of the assessment units "type_descr" = Name of the HELCOM scale 4 assessment unit "SAUID" = ID number for the spatial assessment unit "EcosystemC" = Ecosystem component assessed "Confiden_1" = Confidence of the assessment (0-1, higher values mean higher confidence) "Total_numb" = Number of indicators used in assessment "Area_km2" = Area of assessment unit (km2) "Confiden_1" = Confidence level of the assessment (scores < 0.5 = low, 0.5 - 0.75 = intermediate, > 0.75 = high) "STATUS" = Integrated status category (0-0.2 = not good (lowest score), 0.2-0.4 = not good (lower score), 0.4-0.6 = not good (low score), 0.6-0.8 = good (high score), 0.8-1.0 = good (highest score))

  • The Superficial deposits 1:20 000 / 1:50 000 data include material produced during the period 1972-2007 for land use planning, for the mapping and inventory of the natural resources as well as for environmental management and for scientific research. The main mapping scale has been 1:10 000. The data contains a sediment as a basal deposit at a depth of one metre. The minimum size of the basal deposit polygon is two hectares, with islands, mire and field enclosures, as well as geologically significant sites as an exception. The 0.4-0.9 m thick layers are described as overlying the basal deposit and, in geologically or economically significant cases, such layers could be even thicker. The minimum polygon size of the overlying deposit is usually four hectares. Thin covering layers under 0.4 m in thickness, which are difficult to delimit but effect an area of at least four hectares, are displayed as point data. Besides the deposits Quaternary geological formations formed in different ways, such as eskers and hummocky moraines, are described in the data. Other mapping sites such as small rock exposures, dunes and raised beaches are shown as point or line data. Coordinate reference system of the Superficial deposits 1:20 000 / 1:50 000 was transformed in March 2013. The transformation from Finnish National Grid Coordinate System (Kartastokoordinaattijärjestelmä, KKJ) Uniform Coordinate Frame to ETRS-TM35FIN projection was done by using the three-dimensional transformation in accordance with the recommendations for the public administration JHS154.

  • Laser scanning data refers to three-dimensional point-like data depicting the ground and objects on the ground. Each point is provided with x, y and z coordinate information. Laser scanning data is collected i.a. in order to produce elevation models and collect information about forest resources. Currently laser scanning data is available only from certain parts of Finland. The product belongs to the open data of the National Land Survey of Finland. More information: Topographic data and how to acquire it http://www.maanmittauslaitos.fi/en/maps-and-spatial-data/expert-users/topographic-data-and-how-acquire-it.

  • Categories  

    The EMODnet (European Marine Observation and Data network) Geology project (http://www.emodnet-geology.eu/) collects and harmonizes marine geological data from the European sea areas to support decisionmaking and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys- EuroGeoSurveys), have assembled marine geological information at a scale of 1:50 000 from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This data includes the EMODnet seabed substrate map at a scale of 1: 50 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonized into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. The smallest cartographic unit within the data is about 0.01 km2. Further information about the EMODnet-Geology project is available on the portal (http://www.emodnet-geology.eu/).

  • Categories  

    Forests of high biodiversity value 2018 (Zonation) datapackage consists of 12 nationwide raster maps from Finland. These 12 maps are all different versions of biodiversity values of Finnish forests. Resolution of these raster maps is 96 meters x 96 meters. Simple instructions for reading the raster maps: The bigger the numeric value the higher the biodiversity value. NAT = National scale analyses of biodiversity values of Finnish forests (6 analysis) REG = Regional scale analyses of biodiversity values of Finnish forests (map looks like one but is in reality a collection of 13 separately done analysis, region = Centre for Economic Development, Transport and the Environment in Finland) (6 analysis) Six different spatial conservation prioritizations were made with Zonation Software (a) so that each new version included everything that had been included in previous, simpler, analysis versions. NAT / REG 1 Decaying wood potential: Version 1 (V1) included the local decaying wood potentials*. Areas with lot of large trees, many tree species and rare forest environments get high local value. NAT / REG 2 Decaying wood potential – penalties: Version 2 = V1 + penalties for forestry operations with negative impact on biodiversity. More realistic local values when taking into account real life changes in forests. NAT / REG 3 Decaying wood potential – penalties + forest connectivity: Version 3 = V2 + connectivity based on ecological similarity, distance and quality between forest patches (attenuation avg. 400m). Unfragmented high value forests areas emerge. NAT / REG 4 Decaying wood potential – penalties + forest connectivity + RL species: Version 4 = V3 + observations of Red List forest species. Red List forest species habitats emerge. NAT / REG 5 Decaying wood potential – penalties + forest connectivity + RL species + FFA 10§: Version 5 = V4 + connectivity to woodland key habitats protected by Finnish Forest Act 10 § (attenuation avg. 200m). Valuable forest areas and landscapes close to protected high biodiversity forest patches emerge. NAT / REG 6 Decaying wood potential – penalties + forest connectivity + RL species + FFA 10§ + PA connectivity: Version 6 = V5 + connectivity to permanent conservation areas (attenuation avg. 2km). Valuable forest areas and landscapes close to protected high biodiversity areas emerge. *Calculation of Decaying wood potential (DWP) DWP was calculated for every strata of tree species in every crown storey class in 2 stages: 1) Decaying wood potential indexes (DWPi) were modelled with MOTTI-program (b, c, d). • 168 tree species, fertility class and latitude combinations 2) DWPis were used for converting diameter and volume into decaying wood potential • Generated for the whole Finland at tree stand level at the resolution of 16 m x 16 m • Eventually combined into 20 tree species & fertility classes and aggregated to 96 m x 96 m resolution. Input data Decaying wood potential was calculated from forest stand level datasets (tree species, diameter, volume, fertility) covering whole Finland. Best possible data was used for every area. - 24 % of Finland covered by state-owned forestry and conservation areas and private conservation areas o Metsähallitus Parks & Wildlife: field and forest stand data (5/2015) o Metsähallitus Forestry Inc.: field and forest stand data (5/2015) o Private owned conservation areas: field and forest stand data (5/2015) - 37 % of Finland covered by privately owned other than protected forest areas: Finnish Forest Centre, forest information (6.5.2005 – 6.5.2015) - 39 % of Finland covered by o Natural Resources Institute Finland: Multi-source national forest inventory data of Finland 2013(volume, tree species, fertility class, diameter) Spatial data on forestry operations with negative impact on biodiversity (e. g. fellings, thinning and ditching) (updated 10/2017) - National Land Survey of Finland & Finnish Environment Institute SYKE: Ditching state of Finnish peatlands (SOJT_09b1) - Metsähallitus Forestry Inc.: Executed forest operations of forest operations from field and forest stand data and ditching status - Finnish Forest Centre: Forest declariations and ditching status - University of Maryland / Dept. of Geographica Sciences: Global Forest Change / Forest Cover Loss 2000-2014 Observations of IUCN Red List forest species (since 1990): Finnish Environmental database HERTTA Spatial data on woodland key habitats protected by The Finnish Forest Act 10§ (updated 10/2017) - Finnish Forest Centre: woodland key habitats protected by Finnish Forest act 10§ Spatial data on permanent conservation areas (updated 2/2018) - Metsähallitus Parks & Wildlife: Conservation area database SATJ Background Areas important to forest biodiversity were identified throughout Finland to support sustainable land using planning and nature conservation at local, regional and national level by informing land owners, ministries and forestry stakeholders. Importance of analyzes like this rise from increased usage of natural resources and consequent harmful impacts on biodiversity together with limited resources for conservation. These highlight the importance of developing cost-effective, ecologically sustainable land use planning approaches such as these spatial conservation prioritizations of forests made for a first time for the whole Finland. Prioritization approach, Zonation, was used to find new forest areas of potential high conservation value. The overall aim was to implement nationwide prioritization analyses based on biodiversity-related forest data and land use data recorded at the level of forest stand. Primarily employed data on forest structure and quality (vegetation class, tree species, volume and diameter) provided ecologically useful surrogates for conservation value in boreal forest. Results show that a significant portion of high biodiversity value forests lay outside the current Finnish protected area (PA) network. As most of the Finnish forest area is under commercial management, PA network cannot halt the on-going decline of forest biodiversity. Keywords: biodiversity value, decaying wood, forest biodiversity, Forest Biodiversity Programme for Southern Finland (METSO), forest conservation, forestry, geographical information system (GIS), land use, spatial conservation prioritization, Zonation software Datapackage includes all 12 raster maps and a .lyr -file. .lyr -file contains coloured symbology and descriptions of different analysis versions. .lyr -file is probably operable only with GIS-software prvided by ESRI Inc. Datapackage can be loaded from: http://www.syke.fi/en-US/Open_information/Spatial_datasets High Biodiversity Value Forests 2018 (Zonation) nationwide High Biodiversity Value Forests 2018 (Zonation) regional Detailed poster available: http://www.syke.fi/en-US/Research__Development/Ecosystem_services/Specialist_work/Zonation_in_Finland/Zonation_materials/Posters OR http://www.syke.fi/download/noname/%7B771FF5A4-DAB6-45EE-8246-F38FC0090CAD%7D/138289 Detailed report (only in Finnish): http://hdl.handle.net/10138/234359 Mikkonen et al. 2018. Suomen ympäristökeskuksen raportteja 9/2018. Monimuotoisuudelle tärkeät metsäalueet Suomessa - Puustoisten elinympäristöjen monimuotoisuusarvojen Zonation-analyysien loppuraportti. Other references: a) Moilanen et al. 2014. Zonation–Spatial Conservation Planning Methods and Software. Version 4. User Manual. See also www.syke.fi/Zonation/en b) Hynynen et al. 2015. Eur. J. For. Res. 134/3. Long-term impacts of forest management on biomass supply and forest resource development: a scenario analysis for Finland. c) Hynynen et al. 2014. Metlan työraportteja 302. Scenario analysis for the biomass supply potential and the future development of Finnish forest resources. d) Salminen et al. 2005. Comput. electron. agr. 49/1. Reusing legacy FORTRAN in the MOTTI growth and yield simulator. Availability: Aineisto kuuluu SYKEn avoimiin aineistoihin (CC BY 4.0) Creative Commons 4.0. © SYKE Datasources: Finnish Forest Centre, Metsähallitus, Natural Resources Institute Finland 2015, National Land Survey of Finland, Hansen/UMD/Google/USGS/NASA