Type
 

dataset

1501 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
From 1 - 10 / 1501
  • The EMODnet (European Marine Observation and Data network) Geology project collects and harmonizes marine geological data from the European sea areas to support decision making and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at various scales from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This dataset includes EMODnet seabed substrate maps at a scale of 1:70 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonised into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. Further information about the EMODnet Geology project is available on the portal (http://www.emodnet-geology.eu/).

  • The EMODnet (European Marine Observation and Data network) Geology project collects and harmonizes marine geological data from the European sea areas to support decision making and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at various scales from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This dataset includes EMODnet seabed substrate maps at a scale of 1:60 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonised into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. Further information about the EMODnet Geology project is available on the portal (http://www.emodnet-geology.eu/).

  • The EMODnet (European Marine Observation and Data network) Geology project collects and harmonizes marine geological data from the European sea areas to support decision making and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at various scales from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This dataset includes EMODnet seabed substrate maps at a scale of 1:45 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonised into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. Further information about the EMODnet Geology project is available on the portal (http://www.emodnet-geology.eu/).

  • Categories  

    This assessment was part of project Baltic ForBio funded by the Interreg Baltic Sea Region Programme (https://www.slu.se/en/departments/forest-economics/forskning/research-projects/baltic-forbio/). The project was carried out in 2017-2020. The harvesting potentials in Finland were calculated for the following assortments: • Stemwood for energy from thinnings, pine • Stemwood for energy from thinnings, spruce • Stemwood for energy from thinnings, broadleaved • Stemwood for energy from thinnings (smaller than pulpwood-sized trees), pine • Stemwood for energy from thinnings (smaller than pulpwood-sized trees), spruce • Stemwood for energy from thinnings (smaller than pulpwood-sized trees), broadleaved • Logging residues, pine • Logging residues, spruce • Logging residues, deciduos • Stumps, pine • Stumps, spruce. 1.1 Decision support system used in assessment Regional energywood potentials were calculated with MELA forest planning tool (Siitonen et al. 1996; Hirvelä et al. 2017). 1.2 References and further reading Anttila P., Muinonen E., Laitila J. 2013. Nostoalueen kannoista jää viidennes maahan. [One fifth of the stumps on a stump harvesting area stays in the ground]. BioEnergia 3: 10–11. Anttila P., Nivala V., Salminen O., Hurskainen M., Kärki J., Lindroos T.J. & Asikainen A. 2018. Re-gional balance of forest chip supply and demand in Finland in 2030. Silva Fennica vol. 52 no. 2 article id 9902. 20 p. https://doi.org/10.14214/sf.9902 Hakkila, P. 1978. Pienpuun korjuu polttoaineeksi. Summary: Harvesting small-sized wood for fuel. Folia Forestalia 342. 38 p. Hirvelä, H., Härkönen, K., Lempinen, R., Salminen, O. 2017. MELA2016 Reference Manual. Natural Resources Institute Finland (Luke). 547 p. Hynynen, J., Ojansuu, R., Hökkä, H., Siipilehto, J., Salminen, H. & Haapala, P. 2002. Models for predicting stand development in MELA System. Metsäntutkimuslaitoksen tiedonantoja 835. 116 p. Koistinen A., Luiro J., Vanhatalo K. 2016. Metsänhoidon suositukset energiapuun korjuuseen, työopas. [Guidelines for sustainable harvesting of energy wood]. Metsäkustannus Oy, Helsinki. ISBN 978-952-5632-35-4. 74 p. Mäkisara, K., Katila, M., Peräsaari, J. 2019: The Multi-Source National Forest Inventory of Finland - methods and results 2015. Muinonen E., Anttila P., Heinonen J., Mustonen J. 2013. Estimating the bioenergy potential of forest chips from final fellings in Central Finland based on biomass maps and spatially explicit constraints. Silva Fennica 47(4) article 1022. https://doi.org/10.14214/sf.1022. Natural Resources Institute Finland. 2019. Industrial roundwood removals by region. Available at: http://stat.luke.fi/en/industrial-roundwood-removals-by-region. Accessed 22 Nov 2019. Ruotsalainen, M. 2007. Hyvän metsänhoidon suositukset turvemaille. Metsätalouden kehittämiskeskus Tapio julkaisusarja 26. Metsäkustannus Oy, Helsinki. 51 p. ISBN 978-952-5694-16-1, ISSN 1239-6117. Siitonen M, Härkönen K, Hirvelä H, Jämsä J, Kilpeläinen H, Salminen O et al. 1996. MELA Handbook. 622. 951-40-1543-6. Äijälä, O., Kuusinen, M. & Koistinen, A. (eds.). 2010. Hyvän metsänhoidon suositukset: energiapuun korjuu ja kasvatus. Metsätalouden kehittämiskeskus Tapion julkaisusarja 30. 56 p. ISBN 978-952-5694-59-8, ISSN 1239-6117. Äijälä, O., Koistinen, A., Sved, J., Vanhatalo, K. & Väisänen, P. (eds). 2014. Metsänhoidon suositukset. Metsätalouden kehittämiskeskus Tapion julkaisuja. 180 p. ISBN 978-952-6612-32-4. 2. Output considered in assessment Valid for scenario: Maximum sustained removal Main output ☒Small-diameter trees ☒Stemwood for energy ☒Logging residues ☒Stumps ☐Bark ☐Pulpwood ☐Saw logs Additional information Stemwood for energy from thinnings. Part of this potential consists of trees smaller than pulpwood size. This part is reported as Stemwood for energy from thinnings (smaller than pulpwood-sized trees). Forecast period for the biomass supply assessment Start year: 2016 End year: 2045 Results presented for period 2026-2035 3. Description of scenarios included in the assessments Maximum sustained removal The maximum sustained removal is defined by maximizing the net present value with 4% discount rate subject to non-declining periodic total roundwood removals, energy wood removals and net incomes, further the saw log removals have to remain at least at the level of the first period. There are no sustainability constraints concerning tree species, cutting methods, age classes or the growth/drain -ratio in order to efficiently utilize the dynamics of forest structure. Energy wood removal can consist of stems, cutting residues, stumps and roots. According to the scenario the total annual harvesting potential of industrial roundwood is 79 mill. m3 (over bark) for period 2026-2035. In 2018 removals of industrial roundwood in Finland totaled 68.9 mill. m3 (Natural Resources… 2019). 4. Forest data characteristics Level of detail on forest description ☒High ☐Medium ☐Low NFI data with many and detailed variables down to tree parts. Sample plot based ☒Yes ☐No NFI sample plot data from 2014-2018. Stand based ☐Yes ☒No Grid based ☒Yes ☐No Multi-Source NFI data from 2017 (Mäkisara et al. 2019) utilized when distributing regional potentials to 1 km2 resolution. 5. Forest available for wood supply: Total forest area defined as in: FAO. 2012. FRA 2015, Terms and Definitions. Forest Resources Assessment Working Paper 180. 36 p. Available at: http://www.fao.org/3/ap862e/ap862e00.pdf. Forest and scrub land 22 812 000 ha Forest land 20 278 000 ha and scrub land 2 534 000 ha Forest area not available for wood supply Forest and scrub land 2 979 000 ha Forest land 1 849 000 ha and scrub land 1 130 000 ha Partly available for wood supply Forest and scrub land 2 553 000 ha (includes in FAWS, below) Forest land 1 149 000 ha and scrub land 1 404 000 ha. Forest Available for wood supply (FAWS) Forest and scrub land 19 833 000 ha Forest land 18 429 000 ha and scrub land 1 404 000 ha In MELA calculations all the scrub land belonging to the FAWS belongs to the category “Partly available for wood supply”, but there are no logging events on scrub land regardless or the category. 6. Temporal allocation of fellings Valid for scenario: Maximum sustained removal Allocation method ☐Optimization based without even flow constraints ☒Optimization based with even flow constraints ☐Rule based with no harvest target ☐Rule based with static harvest target ☐Rule based with dynamic harvest target See item 3 above (max NPV with 4 % discount rate). 7. Forest management Valid for scenario: Maximum sustained removal Representation of forest management ☐Rule based ☒Optimization ☐Implicit Treatments, among of the optimization makes the selections, are based on management guidelines (e.g. Äijälä etc 2014) 7.2 General assumptions on forest management Valid for scenario: Maximum sustained removal ☒Complies with current legal requirements ☐Complies with certification ☒Represents current practices ☐None of the above ☐ No information available Forest management follows science-based guidelines of sustainable forest management (Ruotsalainen 2007, Äijälä et al. 2010, Äijälä et al. 2014). 7.3 Detailed assumptions on natural processes and forest management Valid for scenario: Maximum sustainable removal Natural processes ☒Tree growth ☒Tree decay ☒Tree death ☐Other? Tree-level models (e.g. Hynynen et al., 2002). Silvicultural system ☒Even-aged ☐Uneven-aged Click here to enter text. Regeneration method ☒Artificial ☒Natural Regeneration species ☐Current distribution ☒Changed distribution Optimal distribution may differ from the current one. Genetically improved plant material ☐Yes ☒No Cleaning ☒Yes ☐No Thinning ☒Yes ☐No Fertilization ☐Yes ☒No 7.4 Detailed constraints on biomass supply Volume or area left on site at final felling ☒Yes ☐No 5 m3/ha retained trees are left in final fellings. Final fellings can be carried out only on FAWS with no restrictions for wood supply. Constraints for residues extraction ☒Yes ☐No ☐N/A Retention of 30% of logging residues onsite (Koistinen et al. 2016). Dry-matter loss 20% for logging residues, 5% for stemwood. Constraints for stump extraction ☒Yes ☐No ☐N/A Retention of 16–18% of stump biomass (Muinonen et al. 2013; Anttila et al. 2013) Dry-matter loss 5%. 8. External factors Valid for scenario: Maximum sustained removal External factors besides forest management having effect on outcomes Economy ☐Yes ☒No Climate change ☐Yes ☒No Calamities ☐Yes ☒No Other external ☐Yes ☒No

  • The EMODnet (European Marine Observation and Data network) Geology project collects and harmonizes marine geological data from the European sea areas to support decision making and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at various scales from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This dataset includes EMODnet seabed substrate maps at a scale of 1:5 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonised into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. Further information about the EMODnet Geology project is available on the portal (http://www.emodnet-geology.eu/).

  • The EMODnet (European Marine Observation and Data network) Geology project collects and harmonizes marine geological data from the European sea areas to support decision making and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at various scales from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This dataset includes EMODnet seabed substrate maps at a scale of 1:1 500 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonised into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. Further information about the EMODnet Geology project is available on the portal (http://www.emodnet-geology.eu/).

  • Maatalousmaa vuonna 2021 aineisto kuvaa mahdollisimman kattavasti maankäytöltään maatalouteen kuuluvia alueita vuonna 2021, sisältäen sekä maataloustukia saavat alueet, että tukien ulkopuoliset alueet. Aineisto on koostettu käyttäen Ruokaviraston tuottamia perus- ja kasvulohkoaineistoja sekä Maanmittauslaitoksen tuottamaa maastotietokantaa. Peruslohkoaineisto on komission asetuksen 796/2004 ja neuvoston asetuksen (EY) N:o 1782/2003 20 artiklassa tarkoitettu viljelylohkojen tunnistusjärjestelmä. Järjestelmää käytetään EU:n pinta-alaperusteisen maataloustuen hallinnoinnissa. Aineisto käsittää vuoden 2021 peruslohkojen tilanteen 31.12.2021. Kasvulohkolla tarkoitetaan yhteen peruslohkoon kuuluvaa yhtenäistä aluetta, jossa kasvatat yhtä kasvilajia, useamman kasvilajin seosta tai jota kesannoidaan tai joka on erityiskäytössä. Yhdellä peruslohkolla voi olla yksi tai useampia kasvulohkoja. Kasvulohko voi kuulua vain yhteen peruslohkoon. Kasvulohkojen rajat ja samalla niiden pinta-alat voivat vaihdella peruslohkon sisällä vuosittain. Peltolohkorekisteristä on aineistoon otettu mukaan ne lohkot joihin yhdistyy kasvulohkoista tieto viljellystä kasvista. Aineistosta on tiputettu pois ei-maatalousaluetta olevat lohkot, esimerkiksi metsäiset alueet. Maanmittauslaitoksen Maastotietokanta on koko Suomen kattava maastoa kuvaava aineisto ja se koostuu erilaisista kohderyhmistä. Maastotietokannan Maatalousmaa -aineisto sisältää Maastotietokannan pellot, ja puutarhat. Niityt ovat erillinen kohdeluokka. Mammuttiprojektia varten MTK kohdeluokat Maatalousmaa (pellot ja puutarhat) ja Niitty yhdistettiin yhdeksi aineistoksi. Kohdeluokat on poimittu vuoden 2021 Maastotietokannasta. Kohdeluokat ja niiden kuvaukset löytyvät: https://www.maanmittauslaitos.fi/sites/maanmittauslaitos.fi/files/attachments/2018/03/Maastotietokohteet_0.pdf Peruslohkoaineistosta ja maastotietokannasta poimitut kohteet on yhdistetty siten, että maatalousmaa muodostetaan ensisijaisesti käyttämällä peruslohkoaineistosta poimittuja peruslohkoja. Tämän joukon ulkopuolelle jäävä maatalousmaa tulee maastotietokannasta. Aineistojen yhdistäminen on kuvattu tarkemmin tuotantokuvauksessa. https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/maatalousmaa2021.pdf https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/Metatietokuvaus_peltolohkorekisteri.pdf Aineisto kuuluu SYKEn avoimiin aineistoihin (CC BY 4.0).

  • Maatalousmaa vuonna 2020 aineisto kuvaa mahdollisimman kattavasti maankäytöltään maatalouteen kuuluvia alueita vuonna 2020, sisältäen sekä maataloustukia saavat alueet, että tukien ulkopuoliset alueet. Aineisto on koostettu käyttäen Ruokaviraston tuottamia perus- ja kasvulohkoaineistoja sekä Maanmittauslaitoksen tuottamaa maastotietokantaa. Peruslohkoaineisto on komission asetuksen 796/2004 ja neuvoston asetuksen (EY) N:o 1782/2003 20 artiklassa tarkoitettu viljelylohkojen tunnistusjärjestelmä. Järjestelmää käytetään EU:n pinta-alaperusteisen maataloustuen hallinnoinnissa. Aineisto käsittää vuoden 2020 peruslohkojen tilanteen 31.12.2020. Kasvulohkolla tarkoitetaan yhteen peruslohkoon kuuluvaa yhtenäistä aluetta, jossa kasvatat yhtä kasvilajia, useamman kasvilajin seosta tai jota kesannoidaan tai joka on erityiskäytössä. Yhdellä peruslohkolla voi olla yksi tai useampia kasvulohkoja. Kasvulohko voi kuulua vain yhteen peruslohkoon. Kasvulohkojen rajat ja samalla niiden pinta-alat voivat vaihdella peruslohkon sisällä vuosittain. Peltolohkorekisteristä on aineistoon otettu mukaan ne lohkot joihin yhdistyy kasvulohkoista tieto viljellystä kasvista. Aineistosta on tiputettu pois ei-maatalousaluetta olevat lohkot, esimerkiksi metsäiset alueet. Maanmittauslaitoksen Maastotietokanta on koko Suomen kattava maastoa kuvaava aineisto ja se koostuu erilaisista kohderyhmistä. Maastotietokannan Maatalousmaa -aineisto sisältää Maastotietokannan pellot, ja puutarhat. Niityt ovat erillinen kohdeluokka. Mammuttiprojektia varten MTK kohdeluokat Maatalousmaa (pellot ja puutarhat) ja Niitty yhdistettiin yhdeksi aineistoksi. Kohdeluokat on poimittu vuoden 2020 Maastotietokannasta, joka on saatavissa Paituli-palvelusta (poiminta tehty 19.04.2021). Kohdeluokat ja niiden kuvaukset löytyvät: https://www.maanmittauslaitos.fi/sites/maanmittauslaitos.fi/files/attachments/2018/03/Maastotietokohteet_0.pdf Peruslohkoaineistosta ja maastotietokannasta poimitut kohteet on yhdistetty siten, että maatalousmaa muodostetaan ensisijaisesti käyttämällä peruslohkoaineistosta poimittuja peruslohkoja. Tämän joukon ulkopuolelle jäävä maatalousmaa tulee maastotietokannasta. Aineistojen yhdistäminen on kuvattu tarkemmin tuotantokuvauksessa. https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/maatalousmaa2020.pdf https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/Metatietokuvaus_peltolohkorekisteri.pdf Aineisto kuuluu SYKEn avoimiin aineistoihin (CC BY 4.0).

  • The Finnish Uniform Coordinate System (in Finnish Yhtenäiskoordinaatisto, YKJ) has been used in biological observation mapping since the 1970s. Based on YKJ, Finland is divided in square-shaped areas, the size of which are determined according to the needs of the study. The area division used in national biomonitoring is 10 km x 10 km squares, but in some cases 1 km x 1 km and 100 m x 100 m YKJ squares are also used. This data set includes XY-lines that form square grid in four scales according to Unified Coordinate System (100 m - 100 km), with identifiers describing each square.