Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
-
The Finnish Food Authority - INSPIRE WMS is a WMS interface service that provides access to land cover and land use map layers. The service is based on data from the Integrated Aid Control and Management System (IACS) and the Land Parcel Information System (LPIS). The data are managed by the Food Authority. The service is free of charge and does not require authentication.
-
The GTK’s Mineral Deposit database contains all mineral deposits, occurrences and prospects in Finland. Structure of the new database was created in 2012 and it is based on global geostan-dards (GeoSciML and EarthResourceML) and classifications related to them. The database is in Oracle, data products are extracted from the primary database. During 2013 GTK’s separate mineral deposit databases (Au, Zn, Ni, PGE, U, Cu, Industrial minerals, FODD, old ore deposit database) were combined into a single entity. New database contains extensive amount of information about mineral occurrence feature along with its associated commodities, exploration activities, holding history, mineral resource and re-serve estimates, mining activity, production and geology (genetic type, host and wall rocks, min-erals, metamorphism, alteration, age, texture, structure etc.) Database will be updated whenever new data (e.g. resource estimate) is available or new deposit is found. Entries contain references to all published literature and other primary sources of data. Also figures (maps, cross sections, photographs etc.) can be linked to mineral deposit data. Data is based on all public information on the deposits available including published literature, archive reports, press releases, companies’ web pages, and interviews of exploration geologists. Database contains 33 linked tables with 216 data fields. Detailed description of the tables and fields can be found in separate document. (http://tupa/metaviite/MDD_FieldDescription.pdf) The data products extracted from the database are available on Mineral Deposits and Exploration map service (http://gtkdata.gtk.fi/MDaE/index.html) and from Hakku -service (http://hakku.gtk.fi).
-
KUVAUS: Jätehuoltomääräysten biojätteen velvoitealue. Tampereen keskustaajaman alue esitetään kartalla keltaisella. Tampereen keskustaajamassa velvoite on ollut voimassa 1.9.2023 alkaen. Biojätteen velvoitealueen laajennusalueet esitetään kartalla sinisellä. Laajennusalueiden velvoite tulee voimaan siirtymäajan jälkeen, 30.9.2025 mennessä. PÄIVITYS: Satunnainen (vain tarvittaessa). YLLÄPITOSOVELLUS: Tampereen kaupungin tiedostopalvelin ja PostGIS-tietokanta KOORDINAATTIJÄRJESTELMÄ: Aineisto tallennetaan ETRS-GK24FIN (EPSG:3878) tasokoordinaattijärjestelmässä GEOMETRIA: vektori (alue) SAATAVUUS: Aineisto on tallennettu Postgis-tietokantaan. JULKISUUS: Aineisto on nähtävillä julkisesti kaikille käyttäjille Oskari-karttapalvelussa. TIETOSUOJA: Aineistoon ei liity tietosuojakysymyksiä. AINEISTOSTA VASTAAVA TAHO: Tampereen kaupunki, Alueellinen jätehuoltolautakunta, jatehuoltolautakunta@tampere.fi
-
The EMODnet (European Marine Observation and Data network) Geology project (http://www.emodnet-geology.eu/) collects and harmonizes marine geological data from the European sea areas to support decision- making and sustainable marine spatial planning. The partnership includes 36 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at a scale of 1:250 000 from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This data includes the EMODnet seabed substrate map at a scale of 1:250 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonized into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. The data has been generalized into a target scale (1:250 000). The smallest cartographic unit within the data is 0.3 km2 (30 hectares). Further information about the EMODnet-Geology project is available on the portal (http://www.emodnet-geology.eu/).
-
The Baltic Sea Impact Index is an assessment component that describes the potential cumulative burden on the environment in different parts of the Baltic Sea. The BSII is based on georeferenced datasets of human activities (36 datasets), pressures (18 datasets) and ecosystem components (36 datasets), and on sensitivity estimates of ecosystem components (so-called sensitivity scores) that combine the pressure and ecosystem component layers, created in <a href="http://www.helcom.fi/helcom-at-work/projects/holas-ii" target="_blank">HOLAS II</a> project. Cumulative impacts are calculated for each assessment unit (1 km2 grid cells) by summing all pressures occurring in the unit for each ecosystem component. Highest impacts are found from the cells where both are abundant, but high impacts can be caused also by a single pressure if there are diverse and sensitive habitats in the grid cell. All data sets and methodologies used in the index calculations are approved by all HELCOM Contracting Parties in review and acceptance processes. This data set covers the time period 2011-2016. Please scroll down to "Lineage" and visit <a href="http://stateofthebalticsea.helcom.fi/cumulative-impacts/" target="_blank">State of the Baltic Sea website</a> for more info.
-
FIN Järvien vesikasvillisuusvyöhykettä kuvaava aineisto 1971 suomalaisesta järvivesimuodostumasta. Aineisto on polygonivektorimuodossa, jossa yksittäisen järven vesikasvivyöhyke esitetään moniosaisena polygonina. Vesikasvillisuusvyöhyke koostuu ilmakuvilta erottuvasta vedenpinnan yläpuolisesta (ilmaversoinen ja kelluslehtinen) ja aivan vedenpinnan tasolle yltävästä uposlehtisestä kasvillisuudesta. Vesikasvillisuusvyöhykkeen ja järven 0–3 metrin syvyysvyöhykkeen perusteella järville on laskettu kasvittumisaste-niminen tunnusluku, jota käytetään järvien ekologisen tilan arvioinnissa kuvaamaan rehevöitymisen aiheuttamaa kasvillisuuden runsastumista. Vesikasvillisuusvyöhyke on analysoitu Picterra-yrityksen koneoppimismalleilla Maanmittauslaitoksen hallinnoimista väri-infra- eli vääräväriortokuvista vuosilta 2012-2023. Vyöhykkeen analysointi on rajattu 1.7.–10.9. otettuihin ortokuviin. Lisäksi analysointi on rajattu seuraaviin vesienhoidon suunnittelun 3. suunnittelukaudella määritettyihin järvityyppeihin: • Pienet humusjärvet • Keskikokoiset humusjärvet • Runsashumuksiset järvet • Matalat humusjärvet • Matalat runsashumuksiset järvet Aineisto sisältää 698 järvivesimuodostumalta ilmakuvatulkinnan useammalta vuodelta. Havaittu kasvittumisaste on laskettu niille 977 järvivesimuodostumalle, joilta oli saatavissa tieto 0–3 metrin syvyysvyöhykkeestä. Aineistoon on jätetty järviä ilman syvyysaineistoa ja siten kasvittumisasteen laskentaa siinä tarkoituksessa, jotta aineistoa voidaan tarvittaessa hyödyntää muuhunkin kuin kasvittumisaste-muuttujaan perustuvaan tila-arviointiin. Aineistolle on tehty silmämääräinen tarkastus virheellisten havaintojen poistamiseksi. Aineisto voi silti sisältää väärintulkintoja. Kasvittumisasteen luontaisen vaihtelun mallintamisesta saadut tunnusluvut, kuten odotetut kasvittumisasteet ja kasvittumisasteeseen perustuva ekologinen tilaluokka, ovat ympäristöhallinnon asiantuntijoiden katseltavissa Pisara-järjestelmässä. Käyttötarkoitus: Ympäristöhallinnon tehtävien tueksi vesien tilan arviointiin. Järvien ekologisen tilan arviointia tekevät asiantuntijat käyttävät paikkatietoaineistoa ilmakuvatulkinnan laadun arvioimiseen yksittäisellä järvellä. Asiasanat: kaukokartoitus, ilmakuvat, vesikasvillisuus, seuranta, ekologinen tila Lisätietoja: https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/Jarvien_vesikasvillisuusvyohykkeet.pdf https://vesi.fi/aineistopankki/koneoppimispohjaiseen-ilmakuvatulkintaan-perustuva-jarvien-vesikasvillisuuden-tilanarviointi/ ENG This data describes lake macrophyte zone on 1971 Finnish lake waterbodies. The spatial features are represented as multi-part polygons. The attributes are in Finnish. The zone represents emergent and floating-leaved vegetation plus submerged vegetation just above the surface of water. Together with lake bathymetric data, the percentage of vegetated littoral (PVL) was calculated. The PVL is applied in ecological status assessment. Lake macrophyte zone was detected from color-infrared aerial orthophotos administered by the National Land Survey of Finland. The detections were performed with the help of a custom machine learning model trained using Picterra. The detections were applied to orthophotos in 2012-2013 which were filmed between 1st of July and 10th of September. The detections were limited to humic and humic-rich lake waterbodies. There are detections from multiple years for 698 lake waterbodies. Observed PVL were calculated on 977 lake waterbodies which have bathymetric data to identify the 0 to 3 meters deep littoral zone. To potentially utilize the data for more than just the PVL-based approach, the data also have detections on waterbodies without bathymetric data and therefore observed PVL. A visual inspection of the data has been performed to remove erroneous detections. The data may still contain misinterpretations. Purpose of use: Support of environmental administration in ecological status assessment. More information: https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/Jarvien_vesikasvillisuusvyohykkeet.pdf https://vesi.fi/aineistopankki/koneoppimispohjaiseen-ilmakuvatulkintaan-perustuva-jarvien-vesikasvillisuuden-tilanarviointi/
-
LUOMUS WFS is an API to the geospatial information provided by the Finnish Museum of Natural History. The use of the service is free and doesn't require authentication.
-
The EMODnet (European Marine Observation and Data network) Geology project collects and harmonizes marine geological data from the European sea areas to support decision making and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at various scales from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This dataset includes EMODnet seabed substrate maps at a scale of 1:50 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonised into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. Further information about the EMODnet Geology project is available on the portal (http://www.emodnet-geology.eu/).
-
The technical harvesting potential of logging residues and stumps from final fellings can be defined as the maximum potential procurement volume of these available from the Finnish forests based on the prevailing guidelines for harvesting of energy wood. The potentials of logging residues and stumps have been calculated for fifteen NUTS3-based Finnish regions covering the whole country (Koljonen et al. 2017). The technical harvesting potentials were estimated using the sample plots of the eleventh national forest inventory (NFI11) measured in the years 2009–2013. First, a large number of sound and sustainable management schedules for five consecutive ten-year periods were simulated for each sample plot using a large-scale Finnish forest planning system known as MELA (Siitonen et al. 1996; Redsven et al. 2013). MELA simulations consisted of natural processes and human actions. The ingrowth, growth, and mortality of trees were predicted based on a set of distance-independent tree-level statistical models (e.g. Hynynen et al. 2002) included in MELA and the simulation of the stand (sample plot)-level management actions was based on the current Finnish silvicultural guidelines (Äijälä et al. 2014) and the guidelines for harvesting of energy wood (Koistinen et al. 2016). Final fellings consisted of clear cutting, seed tree cutting, and shelter-wood cutting, but only the clear-cutting areas were utilized for energy wood harvesting. As both logging residues and stumps are byproducts of roundwood removals, the technical potentials of chips have to be linked with removals of industrial roundwood. Future potentials were assumed to materialize when the industrial roundwood fellings followed the level of maximum sustainable removals. The maximum sustainable removals were defined such that the net present value calculated with a 4% discount rate was maximized subject to non-declining periodic industrial roundwood and energy wood removals and net incomes, and subject to the saw log removal remaining at least at the level of the first period. There were no constraints concerning tree species selection, cutting methods, age classes, or the growth/drain ratio in order to efficiently utilize the dynamics of forest structure. The felling behaviour of the forest owners was not taken into account either. For the present situation in 2015, the removal of industrial roundwood was assumed to be the same as the average level in 2008–2012. Fourth, the technical harvesting potentials were derived by retention of 30% of the logging residues onsite (Koistinen et al. 2016) and respectively by retention of 16–18% of stump biomass (Muinonen et al. 2013). Next, the regional potentials were allocated to municipalities proportionally to their share of mature forests (MetINFO 2014). Subsequently, the municipality-level potentials were spread evenly on a raster grid at 1 km × 1 km resolution. Only grid cells on Forests Available for Wood Supply (FAWS) were considered in this operation. Here, FAWS was defined as follows: First, forest land was extracted from the Finnish Multi-Source National Forest Inventory (MS-NFI) 2013 data (Mäkisara et al. 2016). Second, restricted areas were excluded from forest land. The restricted areas consisted of nationally protected areas (e.g. nature parks, national parks, protection programme areas). References Äijälä O, Koistinen A, Sved J, Vanhatalo K, Väisänen P (2014) Metsänhoidon suositukset [Guidelines for sustainable forest management]. Metsätalouden kehittämiskeskus Tapion julkaisuja. Hynynen J, Ojansuu R, Hökkä H, Salminen H, Siipilehto J, Haapala P (2002) Models for predicting the stand development – description of biological processes in MELA system. The Finnish Forest Research Institute Research Papers 835. Koistinen A, Luiro J, Vanhatalo K (2016) Metsänhoidon suositukset energiapuun korjuuseen, työopas [Guidelines for sustainable harvesting of energy wood]. Metsäkustannus Oy, Helsinki. Koljonen T, Soimakallio S, Asikainen A, Lanki T, Anttila P, Hildén M, Honkatukia J, Karvosenoja N, Lehtilä A, Lehtonen H, Lindroos TJ, Regina K, Salminen O, Savolahti M, Siljander R (2017) Energia ja ilmastostrategian vaikutusarviot: Yhteenvetoraportti. [Impact assessments of the Energy and Climate strategy: The summary report.] Publications of the Government´s analysis, assessment and research activities 21/2017. Mäkisara K, Katila M, Peräsaari J, Tomppo E (2016) The Multi-Source National Forest Inventory of Finland – methods and results 2013. Natural resources and bioeconomy studies 10/2016. Muinonen E, Anttila P, Heinonen J, Mustonen J (2013) Estimating the bioenergy potential of forest chips from final fellings in Central Finland based on biomass maps and spatially explicit constraints. Silva Fenn 47. Redsven V, Hirvelä H, Härkönen K, Salminen O, Siitonen M (2013) MELA2012 Reference Manual. Finnish Forest Research Institute. Siitonen M, Härkönen K, Hirvelä H, Jämsä J, Kilpeläinen H, Salminen O, Teuri M (1996) MELA Handbook. Metsäntutkimuslaitoksen tiedonantoja 622. ISBN 951-40-1543-6.
-
Tämän aineiston tarkemmat metodikuvaukset löytyvät artikkeleista (Holmberg et al. 2023, Junttila et al. 2023). Tässä on kuvattu aineistoa ja sen valmistelua. Tarkoituksena on ollut tuottaa alueellista tietoa maanpeitteen merkityksestä kasvihuonekaasupäästöihin Suomessa. Lähtöaineisto ja metodit rajoittavat tarkkuutta, mutta aineisto soveltuu paikallisten, esimerkiksi maakuntatason ilmiöiden tarkasteluun. Aineisto edustaa lyhyttä ajanjaksoa. Maanpeiteaineisto perustuu rekisteritietoihin ja kaukokartoitusaineistoon vuosilta 2015-2020, lukuun ottamatta maaperäaineistoa, jokia ja järviä. Aineisto on rasterimuotoista ja tallennettu GeoTiff-formaatissa, joka on yhteensopiva useimpien paikkatieto-ohjelmistojen kanssa. Greenhouse gas net emission intensities by land cover category in Finland The methods related to the data published herein are described in detail in the associated publications (Holmberg et al. 2023, Junttila et al. 2023). This file describes the datasets and the data preparation steps. The aim of this data publication is to provide regional assessments of the role of land cover in greenhouse gas emissions in Finland. The results in the publications are reported for the large administrative divisions, the NUTS 3 regions of mainland Finland (Statistics Finland 2023a). While limited by the accuracy of the methods and source data involved, these data can also be used for more local assessments, e.g., at the scale of municipalities. The data represent a temporal snapshot of land cover. Except for the soil maps, rivers and lakes, all land cover data are from the period 2015-2020 and are based on registry data or remote sensing. Data format. The data are distributed as GeoTiff raster files, which can be read using most GIS-software.