dataset
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
-
This dataset contains the ship accidents in the Baltic Sea during the period 1989 to end of 2023. It is constructed from the annual data collected by HELCOM Contracting Parties on ship accidents in the Baltic Sea and starting from 2019 from EMSA EMCIP Database extraction (for those Contracting Parties that are member of the EU). The accident data has been compiled by the HELCOM Secretariat and EMSA. According to the decision of the HELCOM SEA 2/2001 shipping accident data compilation will include only so-called conventional ships according to the Regulation 5, Annex I of MARPOL 73/78 - any oil tanker of 150 GT and above and any other ships of 400 GT and above which are engaged in voyages to ports or offshore terminals under the jurisdiction of other Parties to the Convention. According to the agreed procedure all accidents (including but not limited to grounding, collision with other vessel or contact with fixed structures (offshore installations, wrecks, etc.), disabled vessel (e.g. machinery and/or structure failure), fire, explosions, etc.), which took place in territorial seas or EEZ of the Contracting Party irrespectively if there was pollution or not, are reported. The dataset contains the following information: Unique_ID = An unique identifier consisting of 4 digit running number and the year of the accident Country Year Date = Date (dd/mm/yyyy) Time = Time of the accident (hh:mm) Location = Location of the accident (open sea / port / port approach, from 2019 -> open sea / port) Acc_Type = Type of accident Colli_Type = Type of collision / contact (with vessel / object) Acc_Detail = More information on the accident CauseDetai = Details on the accident cause Assistance = Assistance after the accident Offence = Offence against Rule Damage = Damage to the ship HumanEleme = Occurrence / Reason of human error IceCondit = Ice conditions CrewIceTra = Crew trained for ice conditions Pollution = Pollution (Yes/No) Pollu_m3 = Pollution in m3 Pollu_t = Pollution in tonnes Pollu_Type = Type of pollution RespAction = Response actions after the accident Cargo_Type = Type of cargo Ship1_Name = Ship 1 identification (Not published after 2018) Sh1_Categ = Ship 1 type (according to AIS category) Sh1_Type = Ship 1 more detail ship type category Sh1_Hull = Ship 1 hull construction Sh1Size_gt = Ship 1 GT Sh1Sizedwt = Ship 1 DWT Sh1Draug_m = Ship 1 draught in meters / category Cause_Sh1 = Cause of accidents from ship 1 Pilot_Sh1 = Presence of pilot on ship 1 Ship2_Name = Ship 2 identification (Not published after 2018) Sh2_Categ = Ship 2 type (according to AIS category) Sh2_Type = Ship 2 more detail ship type category Sh2_Hull = Ship 2 hull construction Sh2Size_gt = Ship 2 GT Sh2Sizedwt = Ship 2 DWT Sh2Draug_m = Ship 2 draught in meters / category Cause_Sh2 = Cause of accidents from ship 2 Pilot_Sh2 = Presence of pilot on ship 2 Add_Info = Additional information Latitude = Latitude (decimal degrees) Longitude = Longitude (decimal degrees) For more information about shipping accidents in the Baltic Sea, see the HELCOM annual reports: https://helcom.fi/helcom-at-work/publications/ https://helcom.fi/media/publications/HELCOM-report-on-Shipping-accidents-in-the-Baltic-Sea-2019-211207-FINAL.pdf
-
FIN Suomen hiekkarantoja ja niiden taustatekijöitä kuvaava aineisto. Datan taustalla olevan hankkeen pääasiallisena tarkoituksena on hiekkarantojen identifioiminen parhaasta käytettävissä olevasta tiedosta, näiden rantojen ominaispiirteiden kuvaaminen, ympäristöllisen arvon arvioiminen sekä hoitotarpeessa olevien rantojen löytäminen. Aineistosta on julkaistu kaksi erillistä versiota. -HiekkarantojenOminaisuudet_avoin: Avoin versio, jonka lajitietoa on karkeistettu mahdollisista herkistä lajeista johtuen. Aineisto kuuluu SYKEn avoimiin aineistoihin (CC BY 4.0) ja sitä saa käyttää lisenssiehtojen mukaisesti -HiekkarantojenOminaisuudet_kayttorajoitettu: Alkuperäinen karkeistamaton versio. Tämä versio on vain viranomaiskäyttöön eikä kyseistä aineistoa saa jakaa” Aineistosta on tehty tarkempi menetelmäkuvaus https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/RantaPutte_Menetelmakuvaus.pdf sekä muuttujaseloste https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/RantaPutte_VariableDescription.xlsx ENG This data describes Finnish sandy beaches and their background factors. The main purpose of the project underlying the data is to identify sandy beaches from the best available information, to describe the characteristics of these beaches, to assess their environmental value and to find beaches in need of conservation There are two separate versions of the data. -HiekkarantojenOminaisuudet_avoin: Open access version, in which its species-related parts have been simplified due to data restriction issues. The material belongs to Syke's open materials (CC BY 4.0) and may be used in accordance with the license terms. -HiekkarantojenOminaisuudet_kayttorajoitettu: Original version. This version is only for official use and the material in question may not be shared. A more precise description about the data procedures can be found from (In Finnish) https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/RantaPutte_Menetelmakuvaus.pdf All the variables in the data are explained in this bilingual variable description https://geoportal.ymparisto.fi/meta/julkinen/dokumentit/RantaPutte_VariableDescription.xlsx
-
Lack of spatial soil data in digital form has been a primary obstacle in establishing European policies on land use and environmental protection. Abundant data on soil characteristics exist in Finland but have been scattered among various sources, making it difficult for authorities to make country-wide presentations and predictions.The objective of the project was to create georeferenced soil map and database according to the instructions of the European Soil Bureau using data from existing databases and collecting some new data. The basis of the work was a geological map of quaternary deposits, which describes the soil at a depth of 1 metrem (parent material) according to the Finnish classification based on the concentration of organic matter and the texture of mineral material. Primary research topics included generalization methodology of soil polygons with GIS technology, calculation of soil characteristics needed in the database and computerizing the existing non-digital soil information. It was proved that aerial geophysics can be used for separation of shallow peats from deep peat soils and muddy soils and other wet areas can be identified. Soil names according to the FAO/Unesco system and the World Reference Base for Soil Resources (WRB-2014) were derived from the soil names of the Finnish soil classification system and geophysical data. Soilscape (Soil Mapping Units) of Finland with WRB-2014 soil classification, intented to be used in European scale e.g to delineate risk areas mentioned in soil framework directive proposal.
-
The Baltic Sea Impact Index is an assessment component that describes the potential cumulative burden on the environment in different parts of the Baltic Sea. The BSII is based on georeferenced datasets of human activities (36 datasets), pressures (18 datasets) and ecosystem components (36 datasets), and on sensitivity estimates of ecosystem components (so-called sensitivity scores) that combine the pressure and ecosystem component layers, created in <a href="http://www.helcom.fi/helcom-at-work/projects/holas-ii" target="_blank">HOLAS II</a> project. Cumulative impacts are calculated for each assessment unit (1 km2 grid cells) by summing all pressures occurring in the unit for each ecosystem component. Highest impacts are found from the cells where both are abundant, but high impacts can be caused also by a single pressure if there are diverse and sensitive habitats in the grid cell. All data sets and methodologies used in the index calculations are approved by all HELCOM Contracting Parties in review and acceptance processes. This data set covers the time period 2011-2016. Please scroll down to "Lineage" and visit <a href="http://stateofthebalticsea.helcom.fi/cumulative-impacts/" target="_blank">State of the Baltic Sea website</a> for more info.
-
The EMODnet (European Marine Observation and Data network) Geology project collects and harmonizes marine geological data from the European sea areas to support decision making and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at various scales from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This dataset includes EMODnet seabed substrate maps at a scale of 1:50 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonised into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. Further information about the EMODnet Geology project is available on the portal (http://www.emodnet-geology.eu/).
-
The Superficial deposits of Finland 1:1 000 000 is based on 'Quaternary Deposits of Finland and Northwestern Part of Russian Federation and their Resources (Sheet 1, Western part)' mapping data. This data is also based on the 1984 map 'Quaternary Deposits of Finland' (1:1 000 000) in the “Geologia” (Geology) folio of the Atlas of Finland, 5th edition (123-126, 1990). Joint scientific and technical planning for the map of the 'Quaternary Deposits of Finland and Northwestern Part of Russian Federation and their Resources' was begun in 1987 while work on the map started in 1988. No field mapping was done for the map, rather the 1:1 000 000 Quaternary map printed in 1984 was supplemented with new data partly obtained from rock aggregate studies and partly from information on superficial deposits gathered in other superficial mapping projects. The map 'Quaternary Deposits of Finland and Northwestern Part of Russian Federation and their Resources' was printed in 1993. The map shows the superficial deposits with colours and symbols and these are classed according to their mode of geological development. The deposit classes are as follows: pre-Quaternary bedrock exposures (no Quaternary layers); boulder field, physically weathered bedrock; gravelly and sandy till; silty till; clayey till; hummocky moraine ; moraine complex; esker, delta, sandur, sorted marginal formation; interlobate formation (esker); till-covered esker / other till-covered gravel and sand deposit; gravel and sand deposit peripheral to eskers; littoral gravel and sand deposit; fluvial deposit; homogeneous clay and silt deposit; layered (varved) clay and silt deposit; peat deposit. Additionally, drumlins, end moraines, aeolian deposits, and sites of gravel, sand, clay and peat extraction as well as gold panning areas have been indicated with symbols. The data set was converted to a digital format to meet the needs of the OneGeology-Europe Project for a printed map in 2009. This data did not include drumlins, end moraines, aeolian deposits, and more important sites for the exploitation of superficial deposits (sites of gravel, sand, clay and peat extraction as well as gold panning areas). In accordance with the 1984 Quaternary map (1:1 000 000) the minimum size of the deposit polygon is generally one square kilometre. In nature the size of superficial sedimentary deposits is usually smaller than one square kilometre and therefore the most common deposit type in the area is shown in the polygon. In places, deposits smaller than a square kilometre that are significant from a superficial perspective have been noted. As a rule, the narrowest point of the deposit polygon was 0.5 km and in important cases, for example on eskers, 0.3 km. As an exception, the size of small eskers has been exaggerated. Coordinate reference system of the Superficial deposits of Finland 1:1 000 000 was transformed in October 2013. The transformation from Finnish National Grid Coordinate System (Kartastokoordinaattijärjestelmä, KKJ) Uniform Coordinate Frame to ETRS-TM35FIN projection was done by using the three-dimensional transformation in accordance with the recommendations for the public administration JHS154. The water layer which were used in the OneGeology-Europe project was replaced in 2015 with the more accurate water layer of the Topographic database 1:55 0000-1:500 000 (DVE3) from ICT Agency HALTIK.
-
The Finnish Uniform Coordinate System (in Finnish Yhtenäiskoordinaatisto, YKJ) has been used in biological observation mapping since the 1970s. Based on YKJ, Finland is divided in square-shaped areas, the size of which are determined according to the needs of the study. The area division used in national biomonitoring is 10 km x 10 km squares, but in some cases 1 km x 1 km and 100 m x 100 m YKJ squares are also used. This data set includes XY-lines that form square grid in four scales according to Unified Coordinate System (100 m - 100 km), with identifiers describing each square.
-
KUVAUS: Tampereen rakennusten 2D-seinälinjat aluemuotoisena geometriana korkeudeltaan nollattuna. Rakennusten ominaisuustiedot tulevat masterdatasta i_pyraknron perusteella. Jos tunnusvastaavuutta ei löydy, geometria ei tule mukaan näkymään. Virkistys aamuisin klo 6.15. KATTAVUUS: Tampereen kaupunkiseutu PÄIVITYS: Aineistoa päivitetään jatkuvasti uusien rakennusten valmistuessa. YLLÄPITOSOVELLUS: StellaMap (DGN-tiedostot) ja FME KOORDINAATTIJÄRJESTELMÄ: Aineisto tallennetaan ETRS-GK24FIN (EPSG:3878) tasokoordinaattijärjestelmässä. GEOMETRIA: vektori (alue) SAATAVUUS: Aineisto on saatavilla WFS-rajapinnalta. Aineiston primäärilähde on Oracle-tietokanta. JULKISUUS: Aineisto on katsottavissa Oskari-karttapalvelussa. KENTÄT: -PYSYVA_RAKENNUSTUNNUS: Tulee rakennuksen i_pyraknro perusteella Factasta. -SIJAINTIKIINTEISTO: Rakennuksen kiinteistötunnus -VALMISTUMISPVM -KERROSALA: Kerrosalaan luetaan kerrosten pinta-alat ja se ullakon tai kellarikerrosten ala, jossa on asuin- tai työhuoneita tai muita rakennuksen pääasiallisen käyttötarkoituksen mukaisia tiloja. Kerrosala on vaakasuora pinta-ala, jota rajoittavat kerrosten seinien ulkopinnat tai niiden ajateltu jatke ulkoseinien pinnassa olevien aukkojen ja koristeosien osalta (Tilastokeskus 2024). -KERROSTEN_LKM -HISSI -RAKENNUSTILAVUUS -POLTTOAINE -LAMMITYSTAPA: Vesikeskuslämmitys, Ilmakeskuslämmitys, Suora sähkölämmitys, Uunilämmitys, Ei kiinteää lämmityslaitetta, tuntematon. -PYSYVA_RAK_NRO_FACTA: Rakennelman pysyvä rakennusnumero Factasta. AINEISTOSTA VASTAAVA TAHO: Tampereen kaupunki, Paikkatietoyksikkö, paikkatieto_tuki@tampere.fi
-
This assessment was part of project Baltic ForBio funded by the Interreg Baltic Sea Region Programme (https://www.slu.se/en/departments/forest-economics/forskning/research-projects/baltic-forbio/). The project was carried out in 2017-2020. The harvesting potentials in Finland were calculated for the following assortments: • Stemwood for energy from 1st thinnings, pine • Stemwood for energy from 1st thinnings, spruce • Stemwood for energy from 1st thinnings, broadleaved • Stemwood for energy from 1st thinnings (smaller than pulpwood-sized trees), pine • Stemwood for energy from 1st thinnings (smaller than pulpwood-sized trees), spruce • Stemwood for energy from 1st thinnings (smaller than pulpwood-sized trees), broadleaved • Logging residues, pine • Logging residues, spruce • Logging residues, deciduos • Stumps, pine • Stumps, spruce. 1.1 Decision support system used in assessment Regional energywood potentials were calculated with MELA forest planning tool (Siitonen et al. 1996; Hirvelä et al. 2017). 1.2 References and further reading Anttila P., Muinonen E., Laitila J. 2013. Nostoalueen kannoista jää viidennes maahan. [One fifth of the stumps on a stump harvesting area stays in the ground]. BioEnergia 3: 10–11. Anttila P., Nivala V., Salminen O., Hurskainen M., Kärki J., Lindroos T.J. & Asikainen A. 2018. Re-gional balance of forest chip supply and demand in Finland in 2030. Silva Fennica vol. 52 no. 2 article id 9902. 20 p. https://doi.org/10.14214/sf.9902 Hakkila, P. 1978. Pienpuun korjuu polttoaineeksi. Summary: Harvesting small-sized wood for fuel. Folia Forestalia 342. 38 p. Hirvelä, H., Härkönen, K., Lempinen, R., Salminen, O. 2017. MELA2016 Reference Manual. Natural Resources Institute Finland (Luke). 547 p. Hynynen, J., Ojansuu, R., Hökkä, H., Siipilehto, J., Salminen, H. & Haapala, P. 2002. Models for predicting stand development in MELA System. Metsäntutkimuslaitoksen tiedonantoja 835. 116 p. Koistinen A., Luiro J., Vanhatalo K. 2016. Metsänhoidon suositukset energiapuun korjuuseen, työopas. [Guidelines for sustainable harvesting of energy wood]. Metsäkustannus Oy, Helsinki. ISBN 978-952-5632-35-4. 74 p. Mäkisara, K., Katila, M., Peräsaari, J. 2019: The Multi-Source National Forest Inventory of Finland - methods and results 2015. Muinonen E., Anttila P., Heinonen J., Mustonen J. 2013. Estimating the bioenergy potential of forest chips from final fellings in Central Finland based on biomass maps and spatially explicit constraints. Silva Fennica 47(4) article 1022. https://doi.org/10.14214/sf.1022. Natural Resources Institute Finland. 2019. Industrial roundwood removals by region. Available at: http://stat.luke.fi/en/industrial-roundwood-removals-by-region. Accessed 22 Nov 2019. Ruotsalainen, M. 2007. Hyvän metsänhoidon suositukset turvemaille. Metsätalouden kehittämiskeskus Tapio julkaisusarja 26. Metsäkustannus Oy, Helsinki. 51 p. ISBN 978-952-5694-16-1, ISSN 1239-6117. Siitonen M, Härkönen K, Hirvelä H, Jämsä J, Kilpeläinen H, Salminen O et al. 1996. MELA Handbook. 622. 951-40-1543-6. Äijälä, O., Kuusinen, M. & Koistinen, A. (eds.). 2010. Hyvän metsänhoidon suositukset: energiapuun korjuu ja kasvatus. Metsätalouden kehittämiskeskus Tapion julkaisusarja 30. 56 p. ISBN 978-952-5694-59-8, ISSN 1239-6117. Äijälä, O., Koistinen, A., Sved, J., Vanhatalo, K. & Väisänen, P. (eds). 2014. Metsänhoidon suositukset. Metsätalouden kehittämiskeskus Tapion julkaisuja. 180 p. ISBN 978-952-6612-32-4. 2. Output considered in assessment Valid for scenario: Maximum sustainable removal Main output ☒Small-diameter trees ☒Stemwood for energy ☒Logging residues ☒Stumps ☐Bark ☐Pulpwood ☐Saw logs Additional information Stemwood for energy from 1st thinnings. Part of this potential consists of trees smaller than pulpwood size. This part is reported as Small-diameter trees. Forecast period for the biomass supply assessment Start year: 2015 End year: 2044 Results presented for period 2025-2034 3. Description of scenarios included in the assessments Maximum sustainable removal The maximum sustainable removal is defined by maximizing the net present value with 4% discount rate subject to non-declining periodic total roundwood removals, energy wood removals and net incomes, further the saw log removals have to remain at least at the level of the first period. There are no sustainability constraints concerning tree species, cutting methods, age classes or the growth/drain -ratio in order to efficiently utilize the dynamics of forest structure. Energy wood removal can consist of stems, cutting residues, stumps and roots. According to the scenario the total annual harvesting potential of industrial roundwood is 80.7 mill. m3 (over bark) for period 2025-2034. In 2018 removals of industrial roundwood in Finland totaled 68.9 mill. m3 (Natural Resources… 2019). 4. Forest data characteristics Level of detail on forest description ☒High ☐Medium ☐Low NFI data with many and detailed variables down to tree parts. Sample plot based ☒Yes ☐No NFI sample plot data from 2013-2017. Stand based ☐Yes ☒No Grid based ☒Yes ☐No Multi-Source NFI data from 2015 (Mäkisara et al. 2019) utilized when distributing regional potentials to 1 km2 resolution. 5. Forest available for wood supply: Total forest area defined as in: FAO. 2012. FRA 2015, Terms and Definitions. Forest Resources Assessment Working Paper 180. 36 p. Available at: http://www.fao.org/3/ap862e/ap862e00.pdf. Forest and scrub land 22 812 000 ha Forest land 20 278 000 ha and scrub land 2 534 000 ha Forest area not available for wood supply Forest and scrub land 2 979 000 ha Forest land 1 849 000 ha and scrub land 1 130 000 ha Partly available for wood supply Forest and scrub land 2 553 000 ha (includes in FAWS, below) Forest land 1 149 000 ha and scrub land 1 404 000 ha. Forest Available for wood supply (FAWS) Forest and scrub land 19 833 000 ha Forest land 18 429 000 ha and scrub land 1 404 000 ha In MELA calculations all the scrub land belonging to the FAWS belongs to the category “Partly available for wood supply”, but there are no logging events on scrub land regardless or the category. 6. Temporal allocation of fellings Valid for scenario: Maximum sustainable removal Allocation method ☐Optimization based without even flow constraints ☒Optimization based with even flow constraints ☐Rule based with no harvest target ☐Rule based with static harvest target ☐Rule based with dynamic harvest target See item 3 above (max NPV with 4 % discount rate). 7. Forest management Valid for scenario: Maximum sustainable removal Representation of forest management ☐Rule based ☒Optimization ☐Implicit Treatments, among of the optimization makes the selections, are based on management guidelines (e.g. Äijälä etc 2014) 7.2 General assumptions on forest management Valid for scenario: Maximum sustainable removal ☒Complies with current legal requirements ☐Complies with certification ☒Represents current practices ☐None of the above ☐ No information available Forest management follows science-based guidelines of sustainable forest management (Ruotsalainen 2007, Äijälä et al. 2010, Äijälä et al. 2014). 7.3 Detailed assumptions on natural processes and forest management Valid for scenario: Maximum sustainable removal Natural processes ☒Tree growth ☒Tree decay ☒Tree death ☐Other? Tree-level models (e.g. Hynynen et al., 2002). Silvicultural system ☒Even-aged ☐Uneven-aged Click here to enter text. Regeneration method ☒Artificial ☒Natural Regeneration species ☐Current distribution ☒Changed distribution Optimal distribution may differ from the current one. Genetically improved plant material ☐Yes ☒No Cleaning ☒Yes ☐No Thinning ☒Yes ☐No Fertilization ☐Yes ☒No 7.4 Detailed constraints on biomass supply Volume or area left on site at final felling ☒Yes ☐No 5 m3/ha retained trees are left in final fellings. Final fellings can be carried out only on FAWS with no restrictions for wood supply. Constraints for residues extraction ☒Yes ☐No ☐N/A Retention of 30% of logging residues onsite (Koistinen et al. 2016) Constraints for stump extraction ☒Yes ☐No ☐N/A Retention of 16–18% of stump biomass (Muinonen et al. 2013; Anttila et al. 2013) 8. External factors Valid for scenario: Maximum sustainable removal External factors besides forest management having effect on outcomes Economy ☐Yes ☒No Climate change ☐Yes ☒No Calamities ☐Yes ☒No Other external ☐Yes ☒No
-
This dataset represents the Integrated biodiversity status assessment for fish used in State of the Baltic Sea – Second HELCOM holistic assessment 2011-2016. Status is shown in five categories based on the integrated assessment scores obtained in the BEAT tool. Biological Quality ratios (BQR) above 0.6 correspond to good status. The assessment is based on core indicators of coastal fish in coastal areas, and on internationally assessed commercial fish in the open sea. The open sea assessment includes fishing mortality and spawning stock biomass as an average over 2011–2016. Open sea results are given by ICES subdivisions, and are not shown where they overlap with coastal areas. Coastal areas results are given in HELCOM Assessment unit Scale 3 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and off-shore areas) Attribute information: "COUNTRY" = name of the country / opensea "Name" = Name of the coastal assessment unit, scale 3 (empty for ICES open sea units) "HELCOM_ID" = ID of the HELCOM scale 3 assessment unit (empty for ICES open sea units) "EcoystemC" = Ecosystem component analyzed "BQR" = Biological Quality Ratio "Conf" = Confidence (0-1, higher values mean higher confidence) "Total_indi" = Number of HELCOM core indicators included (coastal assessment units) "F__of_area = % of area assessed "D1C2" = MSFD descriptor 1 criteria 2 "Number_of" = Number of open sea species included "Confidence" = Confidence of the assessment "BQR_Demer" = Demersal Biological Quality Ratio "F_spec_Deme" = Number of demersal species included "Conf_Demer" = Confidence for demersal species "BQR_Pelagi" = Pelagic Biological Quality Ratio "F_specPela" = Number of pelagic species included "Conf_Pelag" = Confidence for pelagic species "ICES_SD" = ICES Subdivision number "STATUS" = Integrated status category (0-0.2 = not good (lowest score), 0.2-0.4 = not good (lower score), 0.4-0.6 = not good (low score), 0.6-0.8 = good (high score, 0.8-1.0 = good (highest score))